Author: Prasun Kumar
Publisher: Springer Nature
ISBN: 9811568685
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
This book is the second in a two-volume set devoted to bioelectrochemical systems (BESs) and the opportunities that they may offer in providing a green solution to growing energy demands worldwide. While the first volume explains principles and processes, in this volume established research professionals shed light on how this technology can be used to generate high-value chemicals and energy using organic wastes. Bioelectricity is generated in microbial fuel cells (MFCs) under oxygen-depleted conditions, where microbial bioconversion reactions transform organic wastes into electrons. Dedicated chapters focus on MFCs and state of the art advancements as well as current limitations. In addition, the book covers the use of microbial biofilm- and algae-based bioelectrochemical systems for bioremediation and co-generation of valuable chemicals. A thorough review of the performance of this technology and its possible industrial applications is presented. The book is designed for a broad audience, including undergraduates, postgraduates, energy researchers/scientists, policymakers, and anyone else interested in the latest developments in this field.
Bioelectrochemical Systems
Author: Prasun Kumar
Publisher: Springer Nature
ISBN: 9811568685
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
This book is the second in a two-volume set devoted to bioelectrochemical systems (BESs) and the opportunities that they may offer in providing a green solution to growing energy demands worldwide. While the first volume explains principles and processes, in this volume established research professionals shed light on how this technology can be used to generate high-value chemicals and energy using organic wastes. Bioelectricity is generated in microbial fuel cells (MFCs) under oxygen-depleted conditions, where microbial bioconversion reactions transform organic wastes into electrons. Dedicated chapters focus on MFCs and state of the art advancements as well as current limitations. In addition, the book covers the use of microbial biofilm- and algae-based bioelectrochemical systems for bioremediation and co-generation of valuable chemicals. A thorough review of the performance of this technology and its possible industrial applications is presented. The book is designed for a broad audience, including undergraduates, postgraduates, energy researchers/scientists, policymakers, and anyone else interested in the latest developments in this field.
Publisher: Springer Nature
ISBN: 9811568685
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
This book is the second in a two-volume set devoted to bioelectrochemical systems (BESs) and the opportunities that they may offer in providing a green solution to growing energy demands worldwide. While the first volume explains principles and processes, in this volume established research professionals shed light on how this technology can be used to generate high-value chemicals and energy using organic wastes. Bioelectricity is generated in microbial fuel cells (MFCs) under oxygen-depleted conditions, where microbial bioconversion reactions transform organic wastes into electrons. Dedicated chapters focus on MFCs and state of the art advancements as well as current limitations. In addition, the book covers the use of microbial biofilm- and algae-based bioelectrochemical systems for bioremediation and co-generation of valuable chemicals. A thorough review of the performance of this technology and its possible industrial applications is presented. The book is designed for a broad audience, including undergraduates, postgraduates, energy researchers/scientists, policymakers, and anyone else interested in the latest developments in this field.
Development of Novel Bioelectrochemical Membrane Separation Technologies for Wastewater Treatment and Resource Recovery
Author: Yunkun Wang
Publisher: Springer Nature
ISBN: 9811530785
Category : Science
Languages : en
Pages : 166
Book Description
The most commonly used biological wastewater treatment technologies still have serious technical-economical and sustainability-related limitations, due to their high energy requirements, poor effluent quality, and lack of energy and resource recovery processes. In this thesis, novel electrochemical membrane bioreactors (EMBRs), which take advantage of membrane separation and bioelectrochemical techniques, are developed for wastewater treatment and the simultaneous recovery of energy and resources. Above all, this innovative system holds great promise for the efficient wastewater treatment and energy recovery. It can potentially recover net energy from wastewater while at the same time harvesting high-quality effluent. The book also provides a proof-of-concept study showing that electrochemical control might offer a promising in-situ means of suppressing membrane fouling. Lastly, by integrating electrodialysis into EMBRs, phosphate separation and recovery are achieved. Hence, these new EMBR techniques provide viable alternatives for sustainable wastewater treatment and resource recovery.
Publisher: Springer Nature
ISBN: 9811530785
Category : Science
Languages : en
Pages : 166
Book Description
The most commonly used biological wastewater treatment technologies still have serious technical-economical and sustainability-related limitations, due to their high energy requirements, poor effluent quality, and lack of energy and resource recovery processes. In this thesis, novel electrochemical membrane bioreactors (EMBRs), which take advantage of membrane separation and bioelectrochemical techniques, are developed for wastewater treatment and the simultaneous recovery of energy and resources. Above all, this innovative system holds great promise for the efficient wastewater treatment and energy recovery. It can potentially recover net energy from wastewater while at the same time harvesting high-quality effluent. The book also provides a proof-of-concept study showing that electrochemical control might offer a promising in-situ means of suppressing membrane fouling. Lastly, by integrating electrodialysis into EMBRs, phosphate separation and recovery are achieved. Hence, these new EMBR techniques provide viable alternatives for sustainable wastewater treatment and resource recovery.
Technology and Application of Microbial Fuel Cells
Author: Chin-Tsan Wang
Publisher: BoD – Books on Demand
ISBN: 9535116274
Category : Technology & Engineering
Languages : en
Pages : 99
Book Description
Faced with the upcoming serious deficiency of energy, food and water, along with inevitable environmental pollution, much related research has been on the upsurge because Microbial Fuel Cells (MFCs) seem to be one of the solutions to these concerns in the future. The aim of this book is to describe and consider some concepts regarding MFC application designs for interested colleagues. Five topics regarding the technology of flow control, biocatalysts, biofilms, removal of chemical oxygen demand and biochemical fields are addressed in the book. Considering the low power density and short life span of MFCs, there has been a dramatic increase in funding and research that has led to a greater understanding of the fundamental science behind MFC study. This is driving significant improvements in both the reliability and efficiency of MFCs and hence their future use.
Publisher: BoD – Books on Demand
ISBN: 9535116274
Category : Technology & Engineering
Languages : en
Pages : 99
Book Description
Faced with the upcoming serious deficiency of energy, food and water, along with inevitable environmental pollution, much related research has been on the upsurge because Microbial Fuel Cells (MFCs) seem to be one of the solutions to these concerns in the future. The aim of this book is to describe and consider some concepts regarding MFC application designs for interested colleagues. Five topics regarding the technology of flow control, biocatalysts, biofilms, removal of chemical oxygen demand and biochemical fields are addressed in the book. Considering the low power density and short life span of MFCs, there has been a dramatic increase in funding and research that has led to a greater understanding of the fundamental science behind MFC study. This is driving significant improvements in both the reliability and efficiency of MFCs and hence their future use.
Bioelectrochemical Interface Engineering
Author: R. Navanietha Krishnaraj
Publisher: John Wiley & Sons
ISBN: 1119538564
Category : Science
Languages : en
Pages : 560
Book Description
An introduction to the fundamental concepts and rules in bioelectrochemistry and explores latest advancements in the field Bioelectrochemical Interface Engineering offers a guide to this burgeoning interdisciplinary field. The authors—noted experts on the topic—present a detailed explanation of the field’s basic concepts, provide a fundamental understanding of the principle of electrocatalysis, electrochemical activity of the electroactive microorganisms, and mechanisms of electron transfer at electrode-electrolyte interfaces. They also explore the design and development of bioelectrochemical systems. The authors review recent advances in the field including: the development of new bioelectrochemical configurations, new electrode materials, electrode functionalization strategies, and extremophilic electroactive microorganisms. These current developments hold the promise of powering the systems in remote locations such as deep sea and extra-terrestrial space as well as powering implantable energy devices and controlled drug delivery. This important book: • Explores the fundamental concepts and rules in bioelectrochemistry and details the latest advancements • Presents principles of electrocatalysis, electroactive microorganisms, types and mechanisms of electron transfer at electrode-electrolyte interfaces, electron transfer kinetics in bioelectrocatalysis, and more • Covers microbial electrochemical systems and discusses bioelectrosynthesis and biosensors, and bioelectrochemical wastewater treatment • Reviews microbial biosensor, microfluidic and lab-on-chip devices, flexible electronics, and paper and stretchable electrodes Written for researchers, technicians, and students in chemistry, biology, energy and environmental science, Bioelectrochemical Interface Engineering provides a strong foundation to this advanced field by presenting the core concepts, basic principles, and newest advances.
Publisher: John Wiley & Sons
ISBN: 1119538564
Category : Science
Languages : en
Pages : 560
Book Description
An introduction to the fundamental concepts and rules in bioelectrochemistry and explores latest advancements in the field Bioelectrochemical Interface Engineering offers a guide to this burgeoning interdisciplinary field. The authors—noted experts on the topic—present a detailed explanation of the field’s basic concepts, provide a fundamental understanding of the principle of electrocatalysis, electrochemical activity of the electroactive microorganisms, and mechanisms of electron transfer at electrode-electrolyte interfaces. They also explore the design and development of bioelectrochemical systems. The authors review recent advances in the field including: the development of new bioelectrochemical configurations, new electrode materials, electrode functionalization strategies, and extremophilic electroactive microorganisms. These current developments hold the promise of powering the systems in remote locations such as deep sea and extra-terrestrial space as well as powering implantable energy devices and controlled drug delivery. This important book: • Explores the fundamental concepts and rules in bioelectrochemistry and details the latest advancements • Presents principles of electrocatalysis, electroactive microorganisms, types and mechanisms of electron transfer at electrode-electrolyte interfaces, electron transfer kinetics in bioelectrocatalysis, and more • Covers microbial electrochemical systems and discusses bioelectrosynthesis and biosensors, and bioelectrochemical wastewater treatment • Reviews microbial biosensor, microfluidic and lab-on-chip devices, flexible electronics, and paper and stretchable electrodes Written for researchers, technicians, and students in chemistry, biology, energy and environmental science, Bioelectrochemical Interface Engineering provides a strong foundation to this advanced field by presenting the core concepts, basic principles, and newest advances.
Handbook of Metal-Microbe Interactions and Bioremediation
Author: Surajit Das
Publisher: CRC Press
ISBN: 1498762433
Category : Science
Languages : en
Pages : 813
Book Description
Around the World, metal pollution is a major problem. Conventional practices of toxic metal removal can be ineffective and/or expensive, delaying and exacerbating the crisis. Those communities dealing with contamination must be aware of the fundamentals advances of microbe-mediated metal removal practices because these methods can be easily used and require less remedial intervention. This book describes innovations and efficient applications for metal bioremediation for environments polluted by metal contaminates.
Publisher: CRC Press
ISBN: 1498762433
Category : Science
Languages : en
Pages : 813
Book Description
Around the World, metal pollution is a major problem. Conventional practices of toxic metal removal can be ineffective and/or expensive, delaying and exacerbating the crisis. Those communities dealing with contamination must be aware of the fundamentals advances of microbe-mediated metal removal practices because these methods can be easily used and require less remedial intervention. This book describes innovations and efficient applications for metal bioremediation for environments polluted by metal contaminates.
Waste to Sustainable Energy
Author: Lakhveer Singh
Publisher: CRC Press
ISBN: 0429828764
Category : Medical
Languages : en
Pages : 239
Book Description
With no emissions and water as a byproduct, the globe could imagine a sustainable and resilient human kind that obliterates any possible chances of future climate change. With increased globalization, there has been an unprecedented escalation in production processes thus generating valued products and byproducts. A significant quantum of the waste materials generated can be transformed into fuels with the help of MFCs. MFC’s utilities would bring about a paradigm shift built on the principles of sustainability, encompassing closed loop biorefinery approach. A MFC’s bio-refinery ensures complete allocation of products and byproducts in various processes yielding zero waste. Such efforts would not only help in managing waste but also contribute to generation of renewable fuel and valued products that fosters sustainable development. To cater to the needs of the present challenges in waste management, bioenergy and bio product recovery and commercial sustainability, this book on MFCs will emphasize and throw light on various mechanisms, routes and reaction engineering approaches for complete transformation of waste to wealth.
Publisher: CRC Press
ISBN: 0429828764
Category : Medical
Languages : en
Pages : 239
Book Description
With no emissions and water as a byproduct, the globe could imagine a sustainable and resilient human kind that obliterates any possible chances of future climate change. With increased globalization, there has been an unprecedented escalation in production processes thus generating valued products and byproducts. A significant quantum of the waste materials generated can be transformed into fuels with the help of MFCs. MFC’s utilities would bring about a paradigm shift built on the principles of sustainability, encompassing closed loop biorefinery approach. A MFC’s bio-refinery ensures complete allocation of products and byproducts in various processes yielding zero waste. Such efforts would not only help in managing waste but also contribute to generation of renewable fuel and valued products that fosters sustainable development. To cater to the needs of the present challenges in waste management, bioenergy and bio product recovery and commercial sustainability, this book on MFCs will emphasize and throw light on various mechanisms, routes and reaction engineering approaches for complete transformation of waste to wealth.
Microbial Electrochemical Technologies
Author: Makarand M. Ghangrekar
Publisher: John Wiley & Sons
ISBN: 3527838996
Category : Technology & Engineering
Languages : en
Pages : 873
Book Description
A one-stop guide to the future of sustainable energy production The search for sustainable energy sources powered by renewable, non-fossil fuel resources is one of the great scientific challenges of the era. Microorganisms such as bacteria and algae have been shown to function as the basis of a microbial fuel cell, which can operate independently of an electrical power grid on the basis of renewable feed sources. These fuel cells have shown applications ranging from powering implantable biomedical devices to purifying rural water sources, and many more. Microbial Electrochemical Technologies offers a one-stop shop for researchers and developers of technologies incorporating these microbial fuel cells. Beginning with the fundamental processes involved in microbial energy production and the key components of a bioelectrochemical system (BES), it then surveys the major BES types and crucial aspects of technological development and commercialization. The result is an indispensable introduction to these vital power sources and their myriad applications. Microbial Electrochemical Technologies readers will also find: Detailed treatment of BES types including fuel cells, electrolysis and electrosynthesis cells, and more Discussion of commercialization aspects including modelling, performance analysis, and life cycle assessment An authorial team with decades of combined experience on three continents Microbial Electrochemical Technologies is a useful reference for electrochemists, microbiologists, biotechnologists, and bioengineers.
Publisher: John Wiley & Sons
ISBN: 3527838996
Category : Technology & Engineering
Languages : en
Pages : 873
Book Description
A one-stop guide to the future of sustainable energy production The search for sustainable energy sources powered by renewable, non-fossil fuel resources is one of the great scientific challenges of the era. Microorganisms such as bacteria and algae have been shown to function as the basis of a microbial fuel cell, which can operate independently of an electrical power grid on the basis of renewable feed sources. These fuel cells have shown applications ranging from powering implantable biomedical devices to purifying rural water sources, and many more. Microbial Electrochemical Technologies offers a one-stop shop for researchers and developers of technologies incorporating these microbial fuel cells. Beginning with the fundamental processes involved in microbial energy production and the key components of a bioelectrochemical system (BES), it then surveys the major BES types and crucial aspects of technological development and commercialization. The result is an indispensable introduction to these vital power sources and their myriad applications. Microbial Electrochemical Technologies readers will also find: Detailed treatment of BES types including fuel cells, electrolysis and electrosynthesis cells, and more Discussion of commercialization aspects including modelling, performance analysis, and life cycle assessment An authorial team with decades of combined experience on three continents Microbial Electrochemical Technologies is a useful reference for electrochemists, microbiologists, biotechnologists, and bioengineers.
Microbial Technology for the Welfare of Society
Author: Pankaj Kumar Arora
Publisher: Springer Nature
ISBN: 981138844X
Category : Science
Languages : en
Pages : 343
Book Description
This book describes various aspects of modern microbiology including microbial enzymes, secondary metabolites, next-generation sequencing, microbial-based biopesticides, microbial-based cancer therapies, biodiesel, and microbial products from fermentation, biodegradation, bioremediation and wastewater treatment. Further, it explains how and why microbes play an important role in preserving the welfare of living beings and the environment. Many bacteria play a significant part in cleaning our environment by detoxifying various xenobiotic compounds, while several microbes produce secondary metabolites that are useful to human beings. The book is divided into 15 chapters that cover various aspects of microorganism-based biotechnology, including recent methodologies such as advanced molecular techniques, as well developments in classical microbiological techniques. The authors also explain how the latest and classical techniques are being used in modern-day microbial biotechnology. All chapters were written by experts from prominent universities, research laboratories, and institutes around the globe. Above all, they focus on recent advances in microbial technology that promote the welfare of living beings and the environment.
Publisher: Springer Nature
ISBN: 981138844X
Category : Science
Languages : en
Pages : 343
Book Description
This book describes various aspects of modern microbiology including microbial enzymes, secondary metabolites, next-generation sequencing, microbial-based biopesticides, microbial-based cancer therapies, biodiesel, and microbial products from fermentation, biodegradation, bioremediation and wastewater treatment. Further, it explains how and why microbes play an important role in preserving the welfare of living beings and the environment. Many bacteria play a significant part in cleaning our environment by detoxifying various xenobiotic compounds, while several microbes produce secondary metabolites that are useful to human beings. The book is divided into 15 chapters that cover various aspects of microorganism-based biotechnology, including recent methodologies such as advanced molecular techniques, as well developments in classical microbiological techniques. The authors also explain how the latest and classical techniques are being used in modern-day microbial biotechnology. All chapters were written by experts from prominent universities, research laboratories, and institutes around the globe. Above all, they focus on recent advances in microbial technology that promote the welfare of living beings and the environment.
Environmental Nexus Approach
Author: Sartaj Ahmad Bhat
Publisher: CRC Press
ISBN: 1040115489
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Environmental Nexus Approach: Management of Water, Waste, and Soil establishes linkages between environmental resources, such as water, waste, and soil, in order to facilitate sustainable management of these resources. It shows the nexus approach as a policy-relevant means of environmental management by focusing on integrated management of water, waste, and soil resources. It synthesizes interdisciplinary theory, concepts, definitions, models, and findings involved in complex global sustainability problem-solving, making it an essential guide and reference. It includes real-world examples and applications making the book accessible to a broader interdisciplinary readership. Features: Explores cutting-edge developments in the environmental nexus approach of water, waste, and soil. Introduces the key mechanisms regarding antibiotic resistance genes, microplastics, and other emerging contaminants in the water, waste, and soil nexus. Investigates the fate and behavior of heavy metals, polyaromatic hydrocarbons, plastics, and pesticides in soil systems and their risk assessment. Provides insights into the latest developments, current research perspectives, technology development, critical thinking, and societal requirements of the environmental nexus between water, waste, and soil. This book is aimed at graduate students and researchers in environmental science and engineering, environmental engineering, and waste management.
Publisher: CRC Press
ISBN: 1040115489
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Environmental Nexus Approach: Management of Water, Waste, and Soil establishes linkages between environmental resources, such as water, waste, and soil, in order to facilitate sustainable management of these resources. It shows the nexus approach as a policy-relevant means of environmental management by focusing on integrated management of water, waste, and soil resources. It synthesizes interdisciplinary theory, concepts, definitions, models, and findings involved in complex global sustainability problem-solving, making it an essential guide and reference. It includes real-world examples and applications making the book accessible to a broader interdisciplinary readership. Features: Explores cutting-edge developments in the environmental nexus approach of water, waste, and soil. Introduces the key mechanisms regarding antibiotic resistance genes, microplastics, and other emerging contaminants in the water, waste, and soil nexus. Investigates the fate and behavior of heavy metals, polyaromatic hydrocarbons, plastics, and pesticides in soil systems and their risk assessment. Provides insights into the latest developments, current research perspectives, technology development, critical thinking, and societal requirements of the environmental nexus between water, waste, and soil. This book is aimed at graduate students and researchers in environmental science and engineering, environmental engineering, and waste management.
Scaling Up of Microbial Electrochemical Systems
Author: Dipak Ashok Jadhav
Publisher: Elsevier
ISBN: 0323907660
Category : Science
Languages : en
Pages : 514
Book Description
Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability is the first book of its kind to focus on scaling up of microbial electrochemical systems (MES) and the unique challenges faced when moving towards practical applications using this technology. This book emphasizes an understanding of the current limitations of MES technology and suggests a way forward towards onsite applications of MES for practical use. It includes the basics of MES as well as success stories and case studies of MES in the direction of practical applications. This book will give a new direction to energy researchers, scientists and policymakers working on field applications of microbial electrochemical systems—microbial fuel cells, microbial electrolysis cells, microbial electrosynthesis cells, and more. - Promotes the advancement of microbial electrochemical systems, from lab scale to field applications - Illustrates the challenges of scaling up using successive case studies - Provides the basics of MES technology to help deepen understanding of the subject - Addresses lifecycle analysis of MES technology to allow comparison with other conventional methods
Publisher: Elsevier
ISBN: 0323907660
Category : Science
Languages : en
Pages : 514
Book Description
Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability is the first book of its kind to focus on scaling up of microbial electrochemical systems (MES) and the unique challenges faced when moving towards practical applications using this technology. This book emphasizes an understanding of the current limitations of MES technology and suggests a way forward towards onsite applications of MES for practical use. It includes the basics of MES as well as success stories and case studies of MES in the direction of practical applications. This book will give a new direction to energy researchers, scientists and policymakers working on field applications of microbial electrochemical systems—microbial fuel cells, microbial electrolysis cells, microbial electrosynthesis cells, and more. - Promotes the advancement of microbial electrochemical systems, from lab scale to field applications - Illustrates the challenges of scaling up using successive case studies - Provides the basics of MES technology to help deepen understanding of the subject - Addresses lifecycle analysis of MES technology to allow comparison with other conventional methods