Author: John L. Bell
Publisher: Courier Corporation
ISBN: 0486462862
Category : Mathematics
Languages : en
Pages : 290
Book Description
This text introduces topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. Topics include local set theories, fundamental properties of toposes, sheaves, local-valued sets, and natural and real numbers in local set theories. 1988 edition.
Toposes and Local Set Theories
Author: John L. Bell
Publisher: Courier Corporation
ISBN: 0486462862
Category : Mathematics
Languages : en
Pages : 290
Book Description
This text introduces topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. Topics include local set theories, fundamental properties of toposes, sheaves, local-valued sets, and natural and real numbers in local set theories. 1988 edition.
Publisher: Courier Corporation
ISBN: 0486462862
Category : Mathematics
Languages : en
Pages : 290
Book Description
This text introduces topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. Topics include local set theories, fundamental properties of toposes, sheaves, local-valued sets, and natural and real numbers in local set theories. 1988 edition.
Theories, Sites, Toposes
Author: Olivia Caramello
Publisher: Oxford University Press
ISBN: 019875891X
Category : Mathematics
Languages : en
Pages : 381
Book Description
According to Grothendieck, the notion of topos is "the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures". It is what he had "conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an "essence" which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things". The aim of this book is to present a theory and a number of techniques which allow to give substance to Grothendieck's vision by building on the notion of classifying topos educed by categorical logicians. Mathematical theories (formalized within first-order logic) give rise to geometric objects called sites; the passage from sites to their associated toposes embodies the passage from the logical presentation of theories to their mathematical content, i.e. from syntax to semantics. The essential ambiguity given by the fact that any topos is associated in general with an infinite number of theories or different sites allows to study the relations between different theories, and hence the theories themselves, by using toposes as 'bridges' between these different presentations. The expression or calculation of invariants of toposes in terms of the theories associated with them or their sites of definition generates a great number of results and notions varying according to the different types of presentation, giving rise to a veritable mathematical morphogenesis.
Publisher: Oxford University Press
ISBN: 019875891X
Category : Mathematics
Languages : en
Pages : 381
Book Description
According to Grothendieck, the notion of topos is "the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures". It is what he had "conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an "essence" which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things". The aim of this book is to present a theory and a number of techniques which allow to give substance to Grothendieck's vision by building on the notion of classifying topos educed by categorical logicians. Mathematical theories (formalized within first-order logic) give rise to geometric objects called sites; the passage from sites to their associated toposes embodies the passage from the logical presentation of theories to their mathematical content, i.e. from syntax to semantics. The essential ambiguity given by the fact that any topos is associated in general with an infinite number of theories or different sites allows to study the relations between different theories, and hence the theories themselves, by using toposes as 'bridges' between these different presentations. The expression or calculation of invariants of toposes in terms of the theories associated with them or their sites of definition generates a great number of results and notions varying according to the different types of presentation, giving rise to a veritable mathematical morphogenesis.
Toposes, Triples and Theories
Author: M. Barr
Publisher: Springer
ISBN: 9781489900234
Category : Mathematics
Languages : en
Pages : 347
Book Description
As its title suggests, this book is an introduction to three ideas and the connections between them. Before describing the content of the book in detail, we describe each concept briefly. More extensive introductory descriptions of each concept are in the introductions and notes to Chapters 2, 3 and 4. A topos is a special kind of category defined by axioms saying roughly that certain constructions one can make with sets can be done in the category. In that sense, a topos is a generalized set theory. However, it originated with Grothendieck and Giraud as an abstraction of the of the category of sheaves of sets on a topological space. Later, properties Lawvere and Tierney introduced a more general id~a which they called "elementary topos" (because their axioms did not quantify over sets), and they and other mathematicians developed the idea that a theory in the sense of mathematical logic can be regarded as a topos, perhaps after a process of completion. The concept of triple originated (under the name "standard construc in Godement's book on sheaf theory for the purpose of computing tions") sheaf cohomology. Then Peter Huber discovered that triples capture much of the information of adjoint pairs. Later Linton discovered that triples gave an equivalent approach to Lawverc's theory of equational theories (or rather the infinite generalizations of that theory). Finally, triples have turned out to be a very important tool for deriving various properties of toposes.
Publisher: Springer
ISBN: 9781489900234
Category : Mathematics
Languages : en
Pages : 347
Book Description
As its title suggests, this book is an introduction to three ideas and the connections between them. Before describing the content of the book in detail, we describe each concept briefly. More extensive introductory descriptions of each concept are in the introductions and notes to Chapters 2, 3 and 4. A topos is a special kind of category defined by axioms saying roughly that certain constructions one can make with sets can be done in the category. In that sense, a topos is a generalized set theory. However, it originated with Grothendieck and Giraud as an abstraction of the of the category of sheaves of sets on a topological space. Later, properties Lawvere and Tierney introduced a more general id~a which they called "elementary topos" (because their axioms did not quantify over sets), and they and other mathematicians developed the idea that a theory in the sense of mathematical logic can be regarded as a topos, perhaps after a process of completion. The concept of triple originated (under the name "standard construc in Godement's book on sheaf theory for the purpose of computing tions") sheaf cohomology. Then Peter Huber discovered that triples capture much of the information of adjoint pairs. Later Linton discovered that triples gave an equivalent approach to Lawverc's theory of equational theories (or rather the infinite generalizations of that theory). Finally, triples have turned out to be a very important tool for deriving various properties of toposes.
Sketches of an Elephant: A Topos Theory Compendium
Author: P. T. Johnstone
Publisher: Oxford University Press
ISBN: 9780198515982
Category : Computers
Languages : en
Pages : 836
Book Description
Topos Theory is a subject that stands at the junction of geometry, mathematical logic and theoretical computer science, and it derives much of its power from the interplay of ideas drawn from these different areas. Because of this, an account of topos theory which approaches the subject from one particular direction can only hope to give a partial picture; the aim of this compendium is to present as comprehensive an account as possible of all the main approaches and to thereby demonstrate the overall unity of the subject. The material is organized in such a way that readers interested in following a particular line of approach may do so by starting at an appropriate point in the text.
Publisher: Oxford University Press
ISBN: 9780198515982
Category : Computers
Languages : en
Pages : 836
Book Description
Topos Theory is a subject that stands at the junction of geometry, mathematical logic and theoretical computer science, and it derives much of its power from the interplay of ideas drawn from these different areas. Because of this, an account of topos theory which approaches the subject from one particular direction can only hope to give a partial picture; the aim of this compendium is to present as comprehensive an account as possible of all the main approaches and to thereby demonstrate the overall unity of the subject. The material is organized in such a way that readers interested in following a particular line of approach may do so by starting at an appropriate point in the text.
Cantorian Set Theory and Limitation of Size
Author: Michael Hallett
Publisher: Oxford University Press
ISBN: 9780198532835
Category : Mathematics
Languages : en
Pages : 372
Book Description
Cantor's ideas formed the basis for set theory and also for the mathematical treatment of the concept of infinity. The philosophical and heuristic framework he developed had a lasting effect on modern mathematics, and is the recurrent theme of this volume. Hallett explores Cantor's ideas and, in particular, their ramifications for Zermelo-Frankel set theory.
Publisher: Oxford University Press
ISBN: 9780198532835
Category : Mathematics
Languages : en
Pages : 372
Book Description
Cantor's ideas formed the basis for set theory and also for the mathematical treatment of the concept of infinity. The philosophical and heuristic framework he developed had a lasting effect on modern mathematics, and is the recurrent theme of this volume. Hallett explores Cantor's ideas and, in particular, their ramifications for Zermelo-Frankel set theory.
From Sets and Types to Topology and Analysis
Author: Laura Crosilla
Publisher: Oxford University Press
ISBN: 0198566514
Category : Mathematics
Languages : en
Pages : 371
Book Description
Bridging the foundations and practice of constructive mathematics, this text focusses on the contrast between the theoretical developments - which have been most useful for computer science - and more specific efforts on constructive analysis, algebra and topology.
Publisher: Oxford University Press
ISBN: 0198566514
Category : Mathematics
Languages : en
Pages : 371
Book Description
Bridging the foundations and practice of constructive mathematics, this text focusses on the contrast between the theoretical developments - which have been most useful for computer science - and more specific efforts on constructive analysis, algebra and topology.
The Topos of Music
Author: Guerino Mazzola
Publisher: Birkhäuser
ISBN: 303488141X
Category : Mathematics
Languages : en
Pages : 1310
Book Description
With contributions by numerous experts
Publisher: Birkhäuser
ISBN: 303488141X
Category : Mathematics
Languages : en
Pages : 1310
Book Description
With contributions by numerous experts
Set Theory
Author: John L. Bell
Publisher: Oxford University Press
ISBN: 0199609160
Category : Computers
Languages : en
Pages : 214
Book Description
This third edition, now available in paperback, is a follow up to the author's classic Boolean-Valued Models and Independence Proofs in Set Theory,. It provides an exposition of some of the most important results in set theory obtained in the 20th century: the independence of the continuum hypothesis and the axiom of choice. Aimed at graduate students and researchers in mathematics, mathematical logic, philosophy, and computer science, the third edition has been extensively updated with expanded introductory material, new chapters, and a new appendix on category theory. It covers recent developments in the field and contains numerous exercises, along with updated and increased coverage of the background material. This new paperback edition includes additional corrections and, for the first time, will make this landmark text accessible to students in logic and set theory.
Publisher: Oxford University Press
ISBN: 0199609160
Category : Computers
Languages : en
Pages : 214
Book Description
This third edition, now available in paperback, is a follow up to the author's classic Boolean-Valued Models and Independence Proofs in Set Theory,. It provides an exposition of some of the most important results in set theory obtained in the 20th century: the independence of the continuum hypothesis and the axiom of choice. Aimed at graduate students and researchers in mathematics, mathematical logic, philosophy, and computer science, the third edition has been extensively updated with expanded introductory material, new chapters, and a new appendix on category theory. It covers recent developments in the field and contains numerous exercises, along with updated and increased coverage of the background material. This new paperback edition includes additional corrections and, for the first time, will make this landmark text accessible to students in logic and set theory.
Categorical Logic and Type Theory
Author: B. Jacobs
Publisher: Gulf Professional Publishing
ISBN: 9780444508539
Category : Computers
Languages : en
Pages : 784
Book Description
This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.
Publisher: Gulf Professional Publishing
ISBN: 9780444508539
Category : Computers
Languages : en
Pages : 784
Book Description
This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.
Mathematics Of Autonomy: Mathematical Methods For Cyber-physical-cognitive Systems
Author: Vladimir G Ivancevic
Publisher: World Scientific
ISBN: 9813230401
Category : Computers
Languages : en
Pages : 432
Book Description
Mathematics of Autonomy provides solid mathematical foundations for building useful Autonomous Systems. It clarifies what makes a system autonomous rather than simply automated, and reveals the inherent limitations of systems currently incorrectly labeled as autonomous in reference to the specific and strong uncertainty that characterizes the environments they operate in. Such complex real-world environments demand truly autonomous solutions to provide the flexibility and robustness needed to operate well within them.This volume embraces hybrid solutions to demonstrate extending the classes of uncertainty autonomous systems can handle. In particular, it combines physical-autonomy (robots), cyber-autonomy (agents) and cognitive-autonomy (cyber and embodied cognition) to produce a rigorous subset of trusted autonomy: Cyber-Physical-Cognitive autonomy (CPC-autonomy).The body of the book alternates between underlying theory and applications of CPC-autonomy including 'Autonomous Supervision of a Swarm of Robots' , 'Using Wind Turbulence against a Swarm of UAVs' and 'Unique Super-Dynamics for All Kinds of Robots (UAVs, UGVs, UUVs and USVs)' to illustrate how to effectively construct Autonomous Systems using this model. It avoids the wishful thinking that characterizes much discussion related to autonomy, discussing the hard limits and challenges of real autonomous systems. In so doing, it clarifies where more work is needed, and also provides a rigorous set of tools to tackle some of the problem space.
Publisher: World Scientific
ISBN: 9813230401
Category : Computers
Languages : en
Pages : 432
Book Description
Mathematics of Autonomy provides solid mathematical foundations for building useful Autonomous Systems. It clarifies what makes a system autonomous rather than simply automated, and reveals the inherent limitations of systems currently incorrectly labeled as autonomous in reference to the specific and strong uncertainty that characterizes the environments they operate in. Such complex real-world environments demand truly autonomous solutions to provide the flexibility and robustness needed to operate well within them.This volume embraces hybrid solutions to demonstrate extending the classes of uncertainty autonomous systems can handle. In particular, it combines physical-autonomy (robots), cyber-autonomy (agents) and cognitive-autonomy (cyber and embodied cognition) to produce a rigorous subset of trusted autonomy: Cyber-Physical-Cognitive autonomy (CPC-autonomy).The body of the book alternates between underlying theory and applications of CPC-autonomy including 'Autonomous Supervision of a Swarm of Robots' , 'Using Wind Turbulence against a Swarm of UAVs' and 'Unique Super-Dynamics for All Kinds of Robots (UAVs, UGVs, UUVs and USVs)' to illustrate how to effectively construct Autonomous Systems using this model. It avoids the wishful thinking that characterizes much discussion related to autonomy, discussing the hard limits and challenges of real autonomous systems. In so doing, it clarifies where more work is needed, and also provides a rigorous set of tools to tackle some of the problem space.