Author: Djairo G de Figueiredo
Publisher: Springer
ISBN: 3319042149
Category : Mathematics
Languages : en
Pages : 465
Book Description
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.
Analysis and Topology in Nonlinear Differential Equations
Author: Djairo G de Figueiredo
Publisher: Springer
ISBN: 3319042149
Category : Mathematics
Languages : en
Pages : 465
Book Description
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.
Publisher: Springer
ISBN: 3319042149
Category : Mathematics
Languages : en
Pages : 465
Book Description
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.
Nonlinear Analysis - Theory and Methods
Author: Nikolaos S. Papageorgiou
Publisher: Springer
ISBN: 3030034305
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Publisher: Springer
ISBN: 3030034305
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
A Topological Introduction to Nonlinear Analysis
Author: Robert F. Brown
Publisher: Springer Science & Business Media
ISBN: 9780817632588
Category : Mathematics
Languages : en
Pages : 204
Book Description
"The book is highly recommended as a text for an introductory course in nonlinear analysis and bifurcation theory... reading is fluid and very pleasant... style is informal but far from being imprecise." -review of the first edition. New to this edition: additional applications of the theory and techniques, as well as several new proofs. This book is ideal for self-study for mathematicians and students interested in geometric and algebraic topology, functional analysis, differential equations, and applied mathematics.
Publisher: Springer Science & Business Media
ISBN: 9780817632588
Category : Mathematics
Languages : en
Pages : 204
Book Description
"The book is highly recommended as a text for an introductory course in nonlinear analysis and bifurcation theory... reading is fluid and very pleasant... style is informal but far from being imprecise." -review of the first edition. New to this edition: additional applications of the theory and techniques, as well as several new proofs. This book is ideal for self-study for mathematicians and students interested in geometric and algebraic topology, functional analysis, differential equations, and applied mathematics.
Topics in Nonlinear Analysis & Applications
Author: Donald H. Hyers
Publisher: World Scientific
ISBN: 9789810225346
Category : Mathematics
Languages : en
Pages : 724
Book Description
This book develops methods which explore some new interconnections and interrelations between Analysis and Topology and their applications. Emphasis is given to several recent results which have been obtained mainly during the last years and which cannot be found in other books in Nonlinear Analysis. Interest in this subject area has rapidly increased over the last decade, yet the presentation of research has been confined mainly to journal articles.
Publisher: World Scientific
ISBN: 9789810225346
Category : Mathematics
Languages : en
Pages : 724
Book Description
This book develops methods which explore some new interconnections and interrelations between Analysis and Topology and their applications. Emphasis is given to several recent results which have been obtained mainly during the last years and which cannot be found in other books in Nonlinear Analysis. Interest in this subject area has rapidly increased over the last decade, yet the presentation of research has been confined mainly to journal articles.
Nonlinear Functional Analysis
Author: Klaus Deimling
Publisher: Springer Science & Business Media
ISBN: 3662005476
Category : Mathematics
Languages : en
Pages : 465
Book Description
topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical language and way of thinking, one which is no doubt familiar from elementary lectures in analysis that did not worry much about its connections with algebra and topology. Of course we shall use some elementary topological concepts, which may be new, but in fact only a few remarks here and there pertain to algebraic or differential topological concepts and methods.
Publisher: Springer Science & Business Media
ISBN: 3662005476
Category : Mathematics
Languages : en
Pages : 465
Book Description
topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical language and way of thinking, one which is no doubt familiar from elementary lectures in analysis that did not worry much about its connections with algebra and topology. Of course we shall use some elementary topological concepts, which may be new, but in fact only a few remarks here and there pertain to algebraic or differential topological concepts and methods.
Topological Nonlinear Analysis
Author: Michele Matzeu
Publisher: Springer Science & Business Media
ISBN: 1461225701
Category : Mathematics
Languages : en
Pages : 542
Book Description
Topological tools in Nonlinear Analysis had a tremendous develop ment during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Meth ods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of start ing with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent re sults.
Publisher: Springer Science & Business Media
ISBN: 1461225701
Category : Mathematics
Languages : en
Pages : 542
Book Description
Topological tools in Nonlinear Analysis had a tremendous develop ment during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Meth ods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of start ing with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent re sults.
Nonlinear Functional Analysis in Banach Spaces and Banach Algebras
Author: Aref Jeribi
Publisher: CRC Press
ISBN: 1498733891
Category : Mathematics
Languages : en
Pages : 369
Book Description
Uncover the Useful Interactions of Fixed Point Theory with Topological StructuresNonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices w
Publisher: CRC Press
ISBN: 1498733891
Category : Mathematics
Languages : en
Pages : 369
Book Description
Uncover the Useful Interactions of Fixed Point Theory with Topological StructuresNonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices w
Order Structure and Topological Methods in Nonlinear Partial Differential Equations
Author: Yihong Du
Publisher: World Scientific
ISBN: 9812566244
Category : Mathematics
Languages : en
Pages : 202
Book Description
The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.
Publisher: World Scientific
ISBN: 9812566244
Category : Mathematics
Languages : en
Pages : 202
Book Description
The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.
Ten Mathematical Essays on Approximation in Analysis and Topology
Author: Juan Ferrera
Publisher: Elsevier
ISBN: 0080459196
Category : Mathematics
Languages : en
Pages : 283
Book Description
This book collects 10 mathematical essays on approximation in Analysis and Topology by some of the most influent mathematicians of the last third of the 20th Century. Besides the papers contain the very ultimate results in each of their respective fields, many of them also include a series of historical remarks about the state of mathematics at the time they found their most celebrated results, as well as some of their personal circumstances originating them, which makes particularly attractive the book for all scientist interested in these fields, from beginners to experts. These gem pieces of mathematical intra-history should delight to many forthcoming generations of mathematicians, who will enjoy some of the most fruitful mathematics of the last third of 20th century presented by their own authors. This book covers a wide range of new mathematical results. Among them, the most advanced characterisations of very weak versions of the classical maximum principle, the very last results on global bifurcation theory, algebraic multiplicities, general dependencies of solutions of boundary value problems with respect to variations of the underlying domains, the deepest available results in rapid monotone schemes applied to the resolution of non-linear boundary value problems, the intra-history of the the genesis of the first general global continuation results in the context of periodic solutions of nonlinear periodic systems, as well as the genesis of the coincidence degree, some novel applications of the topological degree for ascertaining the stability of the periodic solutions of some classical families of periodic second order equations, the resolution of a number of conjectures related to some very celebrated approximation problems in topology and inverse problems, as well as a number of applications to engineering, an extremely sharp discussion of the problem of approximating topological spaces by polyhedra using various techniques based on inverse systems, as well as homotopy expansions, and the Bishop-Phelps theorem. Key features: - It contains a number of seminal contributions by some of the most world leading mathematicians of the second half of the 20th Century. - The papers cover a complete range of topics, from the intra-history of the involved mathematics to the very last developments in Differential Equations, Inverse Problems, Analysis, Nonlinear Analysis and Topology. - All contributed papers are self-contained works containing rather complete list of references on each of the subjects covered. - The book contains some of the very last findings concerning the maximum principle, the theory of monotone schemes in nonlinear problems, the theory of algebraic multiplicities, global bifurcation theory, dynamics of periodic equations and systems, inverse problems and approximation in topology. - The papers are extremely well written and directed to a wide audience, from beginners to experts. An excellent occasion to become engaged with some of the most fruitful mathematics developed during the last decades.
Publisher: Elsevier
ISBN: 0080459196
Category : Mathematics
Languages : en
Pages : 283
Book Description
This book collects 10 mathematical essays on approximation in Analysis and Topology by some of the most influent mathematicians of the last third of the 20th Century. Besides the papers contain the very ultimate results in each of their respective fields, many of them also include a series of historical remarks about the state of mathematics at the time they found their most celebrated results, as well as some of their personal circumstances originating them, which makes particularly attractive the book for all scientist interested in these fields, from beginners to experts. These gem pieces of mathematical intra-history should delight to many forthcoming generations of mathematicians, who will enjoy some of the most fruitful mathematics of the last third of 20th century presented by their own authors. This book covers a wide range of new mathematical results. Among them, the most advanced characterisations of very weak versions of the classical maximum principle, the very last results on global bifurcation theory, algebraic multiplicities, general dependencies of solutions of boundary value problems with respect to variations of the underlying domains, the deepest available results in rapid monotone schemes applied to the resolution of non-linear boundary value problems, the intra-history of the the genesis of the first general global continuation results in the context of periodic solutions of nonlinear periodic systems, as well as the genesis of the coincidence degree, some novel applications of the topological degree for ascertaining the stability of the periodic solutions of some classical families of periodic second order equations, the resolution of a number of conjectures related to some very celebrated approximation problems in topology and inverse problems, as well as a number of applications to engineering, an extremely sharp discussion of the problem of approximating topological spaces by polyhedra using various techniques based on inverse systems, as well as homotopy expansions, and the Bishop-Phelps theorem. Key features: - It contains a number of seminal contributions by some of the most world leading mathematicians of the second half of the 20th Century. - The papers cover a complete range of topics, from the intra-history of the involved mathematics to the very last developments in Differential Equations, Inverse Problems, Analysis, Nonlinear Analysis and Topology. - All contributed papers are self-contained works containing rather complete list of references on each of the subjects covered. - The book contains some of the very last findings concerning the maximum principle, the theory of monotone schemes in nonlinear problems, the theory of algebraic multiplicities, global bifurcation theory, dynamics of periodic equations and systems, inverse problems and approximation in topology. - The papers are extremely well written and directed to a wide audience, from beginners to experts. An excellent occasion to become engaged with some of the most fruitful mathematics developed during the last decades.
An Introduction to Nonlinear Analysis
Author: Martin Schechter
Publisher: Cambridge University Press
ISBN: 9780521843973
Category : Mathematics
Languages : en
Pages : 380
Book Description
The techniques that can be used to solve non-linear problems are far different than those that are used to solve linear problems. Many courses in analysis and applied mathematics attack linear cases simply because they are easier to solve and do not require a large theoretical background in order to approach them. Professor Schechter's 2005 book is devoted to non-linear methods using the least background material possible and the simplest linear techniques. An understanding of the tools for solving non-linear problems is developed whilst demonstrating their application to problems in one dimension and then leading to higher dimensions. The reader is guided using simple exposition and proof, assuming a minimal set of pre-requisites. For completion, a set of appendices covering essential basics in functional analysis and metric spaces is included, making this ideal as an accompanying text on an upper-undergraduate or graduate course, or even for self-study.
Publisher: Cambridge University Press
ISBN: 9780521843973
Category : Mathematics
Languages : en
Pages : 380
Book Description
The techniques that can be used to solve non-linear problems are far different than those that are used to solve linear problems. Many courses in analysis and applied mathematics attack linear cases simply because they are easier to solve and do not require a large theoretical background in order to approach them. Professor Schechter's 2005 book is devoted to non-linear methods using the least background material possible and the simplest linear techniques. An understanding of the tools for solving non-linear problems is developed whilst demonstrating their application to problems in one dimension and then leading to higher dimensions. The reader is guided using simple exposition and proof, assuming a minimal set of pre-requisites. For completion, a set of appendices covering essential basics in functional analysis and metric spaces is included, making this ideal as an accompanying text on an upper-undergraduate or graduate course, or even for self-study.