Topics on the Information Theoretic Limits of Quantum Information Processing and Its Implementation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Topics on the Information Theoretic Limits of Quantum Information Processing and Its Implementation PDF full book. Access full book title Topics on the Information Theoretic Limits of Quantum Information Processing and Its Implementation by Sadegh Raeisi. Download full books in PDF and EPUB format.

Topics on the Information Theoretic Limits of Quantum Information Processing and Its Implementation

Topics on the Information Theoretic Limits of Quantum Information Processing and Its Implementation PDF Author: Sadegh Raeisi
Publisher:
ISBN:
Category :
Languages : en
Pages : 88

Book Description
Recent advances in quantum technologies enabled us to make large quantum states and pushed towards examining quantum theory at the macroscopic level. However observation of quantum e ects at a macroscopic level still remains a demanding task. In this thesis we try to address one of the challenges and propose and explore some new solutions. One of the obstacles for observation of macroscopic quantum e ects is the sensitivity to the measurement resolution. For many different cases, it has been observed that the precision requirement for measuring quantum effects increases with the system size. We formalize this as a conjecture that for observation of macroscopic quantum effects, either the outcome precision or the control precision of the measurements has to increase with system size. This indicates that the complexity of macroscopic quantum measurement increases with the system size and sheds some lights on the quantum-to-classical transition at the macroscopic level. We also introduce a technique to go around the sensitivity problem for observation of micro-macro entanglement. We propose that using a unitary deamplification process, one can bring the system back to the microscopic level where the measurements are less demanding and quantum effects are easier to verify. As the unitary processes do not change the entanglement, this serves as a verification tool for micro-macro entanglement. We also explored the connection between quantum effects and thermodynamics of macroscopic quantum systems for two specific cases. For one, we investigated the effect of entanglement in composite bosons and Bose-Einstein condensation. We showed that as the state of the composite boson approaches a maximally entangled state, the condensation rate also approaches one. The other case we considered was heat-bath algorithmic cooling. We found the cooling limit of this class of thermodynamic transformations and showed that it decreases exponentially with the number of qubits. We also developed an entropic version of Mermin's inequality. Here the idea is to develop a tool to reveal the entanglement in many-body quantum systems based on the entropy of the measurement outcomes. We introduce a new inequality that holds for locally realistic models, yet can be violated with quantum measurements. One of the nice features of this inequality is that it can be violated maximally with quantum measurements. This resembles the GHZ paradox but for entropies of the measurement outcomes.

Topics on the Information Theoretic Limits of Quantum Information Processing and Its Implementation

Topics on the Information Theoretic Limits of Quantum Information Processing and Its Implementation PDF Author: Sadegh Raeisi
Publisher:
ISBN:
Category :
Languages : en
Pages : 88

Book Description
Recent advances in quantum technologies enabled us to make large quantum states and pushed towards examining quantum theory at the macroscopic level. However observation of quantum e ects at a macroscopic level still remains a demanding task. In this thesis we try to address one of the challenges and propose and explore some new solutions. One of the obstacles for observation of macroscopic quantum e ects is the sensitivity to the measurement resolution. For many different cases, it has been observed that the precision requirement for measuring quantum effects increases with the system size. We formalize this as a conjecture that for observation of macroscopic quantum effects, either the outcome precision or the control precision of the measurements has to increase with system size. This indicates that the complexity of macroscopic quantum measurement increases with the system size and sheds some lights on the quantum-to-classical transition at the macroscopic level. We also introduce a technique to go around the sensitivity problem for observation of micro-macro entanglement. We propose that using a unitary deamplification process, one can bring the system back to the microscopic level where the measurements are less demanding and quantum effects are easier to verify. As the unitary processes do not change the entanglement, this serves as a verification tool for micro-macro entanglement. We also explored the connection between quantum effects and thermodynamics of macroscopic quantum systems for two specific cases. For one, we investigated the effect of entanglement in composite bosons and Bose-Einstein condensation. We showed that as the state of the composite boson approaches a maximally entangled state, the condensation rate also approaches one. The other case we considered was heat-bath algorithmic cooling. We found the cooling limit of this class of thermodynamic transformations and showed that it decreases exponentially with the number of qubits. We also developed an entropic version of Mermin's inequality. Here the idea is to develop a tool to reveal the entanglement in many-body quantum systems based on the entropy of the measurement outcomes. We introduce a new inequality that holds for locally realistic models, yet can be violated with quantum measurements. One of the nice features of this inequality is that it can be violated maximally with quantum measurements. This resembles the GHZ paradox but for entropies of the measurement outcomes.

Quantum Information Processing with Finite Resources

Quantum Information Processing with Finite Resources PDF Author: Marco Tomamichel
Publisher: Springer
ISBN: 3319218913
Category : Science
Languages : en
Pages : 146

Book Description
This book provides the reader with the mathematical framework required to fully explore the potential of small quantum information processing devices. As decoherence will continue to limit their size, it is essential to master the conceptual tools which make such investigations possible. A strong emphasis is given to information measures that are essential for the study of devices of finite size, including Rényi entropies and smooth entropies. The presentation is self-contained and includes rigorous and concise proofs of the most important properties of these measures. The first chapters will introduce the formalism of quantum mechanics, with particular emphasis on norms and metrics for quantum states. This is necessary to explore quantum generalizations of Rényi divergence and conditional entropy, information measures that lie at the core of information theory. The smooth entropy framework is discussed next and provides a natural means to lift many arguments from information theory to the quantum setting. Finally selected applications of the theory to statistics and cryptography are discussed. The book is aimed at graduate students in Physics and Information Theory. Mathematical fluency is necessary, but no prior knowledge of quantum theory is required.

The Theory of Quantum Information

The Theory of Quantum Information PDF Author: John Watrous
Publisher:
ISBN: 1107180562
Category : Computers
Languages : en
Pages : 599

Book Description
Formal development of the mathematical theory of quantum information with clear proofs and exercises. For graduate students and researchers.

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction PDF Author: Ivan Djordjevic
Publisher: Academic Press
ISBN: 0123854911
Category : Computers
Languages : en
Pages : 597

Book Description
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Theory of Quantum Information with Memory

Theory of Quantum Information with Memory PDF Author: Mou-Hsiung Chang
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110788195
Category : Computers
Languages : en
Pages : 426

Book Description
This book provides an up-to-date account of current research in quantum information theory, at the intersection of theoretical computer science, quantum physics, and mathematics. The book confronts many unprecedented theoretical challenges generated by infi nite dimensionality and memory effects in quantum communication. The book will also equip readers with all the required mathematical tools to understand these essential questions.

Theoretical Foundations of Quantum Information Processing and Communication

Theoretical Foundations of Quantum Information Processing and Communication PDF Author: Erwin Brüning
Publisher: Springer
ISBN: 3642028713
Category : Science
Languages : en
Pages : 260

Book Description
Based on eight extensive lectures selected from those given at the renowned Chris Engelbrecht Summer School in Theoretical Physics in South Africa, this text on the theoretical foundations of quantum information processing and communication covers an array of topics, including quantum probabilities, open systems, and non-Markovian dynamics and decoherence. It also addresses quantum information and relativity as well as testing quantum mechanics in high energy physics. Because these self-contained lectures discuss topics not typically covered in advanced undergraduate courses, they are ideal for post-graduate students entering this field of research. Some of the lectures are written at a more introductory level while others are presented as tutorials that survey recent developments and results in various subfields.

Lectures on Quantum Information

Lectures on Quantum Information PDF Author: Dagmar Bruss
Publisher: Wiley-VCH
ISBN:
Category : Computers
Languages : en
Pages : 648

Book Description
Quantum Information Processing is a young and rapidly growing field of research at the intersection of physics, mathematics, and computer science. Its ultimate goal is to harness quantum physics to conceive -- and ultimately build -- "quantum" computers that would dramatically overtake the capabilities of today's "classical" computers. One example of the power of a quantum computer is its ability to efficiently find the prime factors of a larger integer, thus shaking the supposedly secure foundations of standard encryption schemes. This comprehensive textbook on the rapidly advancing field introduces readers to the fundamental concepts of information theory and quantum entanglement, taking into account the current state of research and development. It thus covers all current concepts in quantum computing, both theoretical and experimental, before moving on to the latest implementations of quantum computing and communication protocols. With its series of exercises, this is ideal reading for students and lecturers in physics and informatics, as well as experimental and theoretical physicists, and physicists in industry. Dagmar Bruß graduated at RWTH University Aachen, Germany, and received her PhD in theoretical particle physics from the University of Heidelberg in 1994. As a research fellow at the University of Oxford she started to work in quantum information theory. Another fellowship at ISI Torino, Italy, followed. While being a research assistant at the University of Hannover she completed her habilitation. Since 2004 Professor Bruß has been holding a chair at the Institute of Theoretical Physics at the Heinrich-Heine-University Düsseldorf, Germany. Gerd Leuchs studied physics and mathematics at the University of Cologne, Germany, and received his Ph.D. in 1978. After two research visits at the University of Colorado in Boulder, USA, he headed the German gravitational wave detection group from 1985 to 1989. He became technical director at Nanomach AG in Switzerland. Since 1994 Professor Leuchs has been holding the chair for optics at the Friedrich-Alexander-University of Erlangen-Nuremberg, Germany. His fields of research span the range from modern aspects of classical optics to quantum optics and quantum information. Since 2003 he has been Director of the Max Planck Research Group for Optics, Information and Photonics at Erlangen.

Introduction to the Theory of Quantum Information Processing

Introduction to the Theory of Quantum Information Processing PDF Author: János A. Bergou
Publisher: Springer
ISBN: 9781461470915
Category : Computers
Languages : en
Pages : 0

Book Description
Introduction to the Theory of Quantum Information Processing provides the material for a one-semester graduate level course on quantum information theory and quantum computing for students who have had a one-year graduate course in quantum mechanics. Many standard subjects are treated, such as density matrices, entanglement, quantum maps, quantum cryptography, and quantum codes. Also included are discussions of quantum machines and quantum walks. In addition, the book provides detailed treatments of several underlying fundamental principles of quantum theory, such as quantum measurements, the no-cloning and no-signaling theorems, and their consequences. Problems of various levels of difficulty supplement the text, with the most challenging problems bringing the reader to the forefront of active research. This book provides a compact introduction to the fascinating and rapidly evolving interdisciplinary field of quantum information theory, and it prepares the reader for doing active research in this area.

Quantum Information Processing

Quantum Information Processing PDF Author: János A. Bergou
Publisher: Springer Nature
ISBN: 3030754367
Category : Computers
Languages : en
Pages : 310

Book Description
This new edition of a well-received textbook provides a concise introduction to both the theoretical and experimental aspects of quantum information at the graduate level. While the previous edition focused on theory, the book now incorporates discussions of experimental platforms. Several chapters on experimental implementations of quantum information protocols have been added: implementations using neutral atoms, trapped ions, optics, and solidstate systems are each presented in its own chapter. Previous chapters on entanglement, quantum measurements, quantum dynamics, quantum cryptography, and quantum algorithms have been thoroughly updated, and new additions include chapters on the stabilizer formalism and the Gottesman-Knill theorem as well as aspects of classical and quantum information theory. To facilitate learning, each chapter starts with a clear motivation to the topic and closes with exercises and a recommended reading list. Quantum Information Processing: Theory and Implementation will be essential to graduate students studying quantum information as well as and researchers in other areas of physics who wish to gain knowledge in the field.

Quantum Information Processing

Quantum Information Processing PDF Author: Dimitris G. Angelakis
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 382

Book Description
The knowledge that nature can be coherently controlled and manipulated at the quantum level was perceived as both a powerful stimulus and one of the greatest challenges facing experimental physics. Fortunately the exploration of quantum technology has many staging posts along the way, each of which will yield scientifically and technologically useful results and some of them are described in this volume.