Author: Prateek Jain
Publisher: Foundations and Trends in Machine Learning
ISBN: 9781680833683
Category : Machine learning
Languages : en
Pages : 218
Book Description
Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It introduces the rich literature in this area, as well as equips the reader with the tools and techniques needed to apply and analyze simple but powerful procedures for non-convex problems. Non-convex Optimization for Machine Learning is as self-contained as possible while not losing focus of the main topic of non-convex optimization techniques. The monograph initiates the discussion with entire chapters devoted to presenting a tutorial-like treatment of basic concepts in convex analysis and optimization, as well as their non-convex counterparts. The monograph concludes with a look at four interesting applications in the areas of machine learning and signal processing, and exploring how the non-convex optimization techniques introduced earlier can be used to solve these problems. The monograph also contains, for each of the topics discussed, exercises and figures designed to engage the reader, as well as extensive bibliographic notes pointing towards classical works and recent advances. Non-convex Optimization for Machine Learning can be used for a semester-length course on the basics of non-convex optimization with applications to machine learning. On the other hand, it is also possible to cherry pick individual portions, such the chapter on sparse recovery, or the EM algorithm, for inclusion in a broader course. Several courses such as those in machine learning, optimization, and signal processing may benefit from the inclusion of such topics.
Non-convex Optimization for Machine Learning
Author: Prateek Jain
Publisher: Foundations and Trends in Machine Learning
ISBN: 9781680833683
Category : Machine learning
Languages : en
Pages : 218
Book Description
Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It introduces the rich literature in this area, as well as equips the reader with the tools and techniques needed to apply and analyze simple but powerful procedures for non-convex problems. Non-convex Optimization for Machine Learning is as self-contained as possible while not losing focus of the main topic of non-convex optimization techniques. The monograph initiates the discussion with entire chapters devoted to presenting a tutorial-like treatment of basic concepts in convex analysis and optimization, as well as their non-convex counterparts. The monograph concludes with a look at four interesting applications in the areas of machine learning and signal processing, and exploring how the non-convex optimization techniques introduced earlier can be used to solve these problems. The monograph also contains, for each of the topics discussed, exercises and figures designed to engage the reader, as well as extensive bibliographic notes pointing towards classical works and recent advances. Non-convex Optimization for Machine Learning can be used for a semester-length course on the basics of non-convex optimization with applications to machine learning. On the other hand, it is also possible to cherry pick individual portions, such the chapter on sparse recovery, or the EM algorithm, for inclusion in a broader course. Several courses such as those in machine learning, optimization, and signal processing may benefit from the inclusion of such topics.
Publisher: Foundations and Trends in Machine Learning
ISBN: 9781680833683
Category : Machine learning
Languages : en
Pages : 218
Book Description
Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It introduces the rich literature in this area, as well as equips the reader with the tools and techniques needed to apply and analyze simple but powerful procedures for non-convex problems. Non-convex Optimization for Machine Learning is as self-contained as possible while not losing focus of the main topic of non-convex optimization techniques. The monograph initiates the discussion with entire chapters devoted to presenting a tutorial-like treatment of basic concepts in convex analysis and optimization, as well as their non-convex counterparts. The monograph concludes with a look at four interesting applications in the areas of machine learning and signal processing, and exploring how the non-convex optimization techniques introduced earlier can be used to solve these problems. The monograph also contains, for each of the topics discussed, exercises and figures designed to engage the reader, as well as extensive bibliographic notes pointing towards classical works and recent advances. Non-convex Optimization for Machine Learning can be used for a semester-length course on the basics of non-convex optimization with applications to machine learning. On the other hand, it is also possible to cherry pick individual portions, such the chapter on sparse recovery, or the EM algorithm, for inclusion in a broader course. Several courses such as those in machine learning, optimization, and signal processing may benefit from the inclusion of such topics.
Modern Nonconvex Nondifferentiable Optimization
Author: Ying Cui
Publisher: Society for Industrial and Applied Mathematics (SIAM)
ISBN: 9781611976731
Category : Convex functions
Languages : en
Pages : 0
Book Description
"This monograph serves present and future needs where nonconvexity and nondifferentiability are inevitably present in the faithful modeling of real-world applications of optimization"--
Publisher: Society for Industrial and Applied Mathematics (SIAM)
ISBN: 9781611976731
Category : Convex functions
Languages : en
Pages : 0
Book Description
"This monograph serves present and future needs where nonconvexity and nondifferentiability are inevitably present in the faithful modeling of real-world applications of optimization"--
Nonsmooth Optimization and Related Topics
Author: F.H. Clarke
Publisher: Springer Science & Business Media
ISBN: 1475760191
Category : Science
Languages : en
Pages : 481
Book Description
This volume contains the edited texts of the lect. nres presented at the International School of Mathematics devoted to Nonsmonth Optimization, held from . June 20 to July I, 1988. The site for the meeting was the "Ettore ~Iajorana" Centre for Sci entific Culture in Erice, Sicily. In the tradition of these meetings the main purpose was to give the state-of-the-art of an important and growing field of mathematics, and to stimulate interactions between finite-dimensional and infinite-dimensional op timization. The School was attended by approximately 80 people from 23 countries; in particular it was possible to have some distinguished lecturers from the SO\·iet Union, whose research institutions are here gratt-fnlly acknowledged. Besides the lectures, several seminars were delivered; a special s·~ssion was devoted to numerical computing aspects. The result was a broad exposure. gi ·. ring a deep knowledge of the present research tendencies in the field. We wish to express our appreciation to all the participants. Special mention 5hould be made of the Ettorc ;. . Iajorana Centre in Erice, which helped provide a stimulating and rewarding experience, and of its staff which was fundamental for the success of the meeting. j\, loreover, WP want to extend uur deep appreci
Publisher: Springer Science & Business Media
ISBN: 1475760191
Category : Science
Languages : en
Pages : 481
Book Description
This volume contains the edited texts of the lect. nres presented at the International School of Mathematics devoted to Nonsmonth Optimization, held from . June 20 to July I, 1988. The site for the meeting was the "Ettore ~Iajorana" Centre for Sci entific Culture in Erice, Sicily. In the tradition of these meetings the main purpose was to give the state-of-the-art of an important and growing field of mathematics, and to stimulate interactions between finite-dimensional and infinite-dimensional op timization. The School was attended by approximately 80 people from 23 countries; in particular it was possible to have some distinguished lecturers from the SO\·iet Union, whose research institutions are here gratt-fnlly acknowledged. Besides the lectures, several seminars were delivered; a special s·~ssion was devoted to numerical computing aspects. The result was a broad exposure. gi ·. ring a deep knowledge of the present research tendencies in the field. We wish to express our appreciation to all the participants. Special mention 5hould be made of the Ettorc ;. . Iajorana Centre in Erice, which helped provide a stimulating and rewarding experience, and of its staff which was fundamental for the success of the meeting. j\, loreover, WP want to extend uur deep appreci
Duality Principles in Nonconvex Systems
Author: David Yang Gao
Publisher: Springer Science & Business Media
ISBN: 9780792361459
Category : Mathematics
Languages : en
Pages : 476
Book Description
Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.
Publisher: Springer Science & Business Media
ISBN: 9780792361459
Category : Mathematics
Languages : en
Pages : 476
Book Description
Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.
Evaluation Complexity of Algorithms for Nonconvex Optimization
Author: Coralia Cartis
Publisher: SIAM
ISBN: 1611976995
Category : Mathematics
Languages : en
Pages : 549
Book Description
A popular way to assess the “effort” needed to solve a problem is to count how many evaluations of the problem functions (and their derivatives) are required. In many cases, this is often the dominating computational cost. Given an optimization problem satisfying reasonable assumptions—and given access to problem-function values and derivatives of various degrees—how many evaluations might be required to approximately solve the problem? Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives addresses this question for nonconvex optimization problems, those that may have local minimizers and appear most often in practice. This is the first book on complexity to cover topics such as composite and constrained optimization, derivative-free optimization, subproblem solution, and optimal (lower and sharpness) bounds for nonconvex problems. It is also the first to address the disadvantages of traditional optimality measures and propose useful surrogates leading to algorithms that compute approximate high-order critical points, and to compare traditional and new methods, highlighting the advantages of the latter from a complexity point of view. This is the go-to book for those interested in solving nonconvex optimization problems. It is suitable for advanced undergraduate and graduate students in courses on advanced numerical analysis, data science, numerical optimization, and approximation theory.
Publisher: SIAM
ISBN: 1611976995
Category : Mathematics
Languages : en
Pages : 549
Book Description
A popular way to assess the “effort” needed to solve a problem is to count how many evaluations of the problem functions (and their derivatives) are required. In many cases, this is often the dominating computational cost. Given an optimization problem satisfying reasonable assumptions—and given access to problem-function values and derivatives of various degrees—how many evaluations might be required to approximately solve the problem? Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives addresses this question for nonconvex optimization problems, those that may have local minimizers and appear most often in practice. This is the first book on complexity to cover topics such as composite and constrained optimization, derivative-free optimization, subproblem solution, and optimal (lower and sharpness) bounds for nonconvex problems. It is also the first to address the disadvantages of traditional optimality measures and propose useful surrogates leading to algorithms that compute approximate high-order critical points, and to compare traditional and new methods, highlighting the advantages of the latter from a complexity point of view. This is the go-to book for those interested in solving nonconvex optimization problems. It is suitable for advanced undergraduate and graduate students in courses on advanced numerical analysis, data science, numerical optimization, and approximation theory.
First-order and Stochastic Optimization Methods for Machine Learning
Author: Guanghui Lan
Publisher: Springer Nature
ISBN: 3030395685
Category : Mathematics
Languages : en
Pages : 591
Book Description
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.
Publisher: Springer Nature
ISBN: 3030395685
Category : Mathematics
Languages : en
Pages : 591
Book Description
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.
Modern Nonconvex Nondifferentiable Optimization
Author: Ying Cui
Publisher: SIAM
ISBN: 161197674X
Category : Mathematics
Languages : en
Pages : 792
Book Description
Starting with the fundamentals of classical smooth optimization and building on established convex programming techniques, this research monograph presents a foundation and methodology for modern nonconvex nondifferentiable optimization. It provides readers with theory, methods, and applications of nonconvex and nondifferentiable optimization in statistical estimation, operations research, machine learning, and decision making. A comprehensive and rigorous treatment of this emergent mathematical topic is urgently needed in today’s complex world of big data and machine learning. This book takes a thorough approach to the subject and includes examples and exercises to enrich the main themes, making it suitable for classroom instruction. Modern Nonconvex Nondifferentiable Optimization is intended for applied and computational mathematicians, optimizers, operations researchers, statisticians, computer scientists, engineers, economists, and machine learners. It could be used in advanced courses on optimization/operations research and nonconvex and nonsmooth optimization.
Publisher: SIAM
ISBN: 161197674X
Category : Mathematics
Languages : en
Pages : 792
Book Description
Starting with the fundamentals of classical smooth optimization and building on established convex programming techniques, this research monograph presents a foundation and methodology for modern nonconvex nondifferentiable optimization. It provides readers with theory, methods, and applications of nonconvex and nondifferentiable optimization in statistical estimation, operations research, machine learning, and decision making. A comprehensive and rigorous treatment of this emergent mathematical topic is urgently needed in today’s complex world of big data and machine learning. This book takes a thorough approach to the subject and includes examples and exercises to enrich the main themes, making it suitable for classroom instruction. Modern Nonconvex Nondifferentiable Optimization is intended for applied and computational mathematicians, optimizers, operations researchers, statisticians, computer scientists, engineers, economists, and machine learners. It could be used in advanced courses on optimization/operations research and nonconvex and nonsmooth optimization.
Inference and Learning from Data: Volume 1
Author: Ali H. Sayed
Publisher: Cambridge University Press
ISBN: 1009218131
Category : Technology & Engineering
Languages : en
Pages : 1106
Book Description
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This first volume, Foundations, introduces core topics in inference and learning, such as matrix theory, linear algebra, random variables, convex optimization and stochastic optimization, and prepares students for studying their practical application in later volumes. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 600 end-of-chapter problems (including solutions for instructors), 100 figures, 180 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Inference and Learning, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, statistical analysis, data science and inference.
Publisher: Cambridge University Press
ISBN: 1009218131
Category : Technology & Engineering
Languages : en
Pages : 1106
Book Description
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This first volume, Foundations, introduces core topics in inference and learning, such as matrix theory, linear algebra, random variables, convex optimization and stochastic optimization, and prepares students for studying their practical application in later volumes. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 600 end-of-chapter problems (including solutions for instructors), 100 figures, 180 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Inference and Learning, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, statistical analysis, data science and inference.
Inference and Learning from Data
Author: Ali H. Sayed
Publisher: Cambridge University Press
ISBN: 1009218263
Category : Computers
Languages : en
Pages : 1165
Book Description
Discover techniques for inferring unknown variables and quantities with the second volume of this extraordinary three-volume set.
Publisher: Cambridge University Press
ISBN: 1009218263
Category : Computers
Languages : en
Pages : 1165
Book Description
Discover techniques for inferring unknown variables and quantities with the second volume of this extraordinary three-volume set.
Inference and Learning from Data: Volume 3
Author: Ali H. Sayed
Publisher: Cambridge University Press
ISBN: 1009218301
Category : Technology & Engineering
Languages : en
Pages : 1082
Book Description
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This final volume, Learning, builds on the foundational topics established in volume I to provide a thorough introduction to learning methods, addressing techniques such as least-squares methods, regularization, online learning, kernel methods, feedforward and recurrent neural networks, meta-learning, and adversarial attacks. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 350 end-of-chapter problems (including complete solutions for instructors), 280 figures, 100 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Foundations and Inference, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, data and inference.
Publisher: Cambridge University Press
ISBN: 1009218301
Category : Technology & Engineering
Languages : en
Pages : 1082
Book Description
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This final volume, Learning, builds on the foundational topics established in volume I to provide a thorough introduction to learning methods, addressing techniques such as least-squares methods, regularization, online learning, kernel methods, feedforward and recurrent neural networks, meta-learning, and adversarial attacks. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 350 end-of-chapter problems (including complete solutions for instructors), 280 figures, 100 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Foundations and Inference, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, data and inference.