Author: Andrea Crisanti
Publisher: Springer Science & Business Media
ISBN: 3642849423
Category : Science
Languages : en
Pages : 172
Book Description
At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been obtained in recent years and much progress has been made, we still lack a satisfactory understanding of the extremely wide variety of phenomena which are present in these fields. The study of disordered or chaotic systems is the new frontier where new ideas and techniques are being developed. More interesting and deep results are expected to come in future years. The properties of random matrices and their products form a basic tool, whose importance cannot be underestimated. They playa role as important as Fourier transforms for differential equations. This book is extremely interesting as far as it presents a unified approach for the main results which have been obtained in the study of random ma trices. It will become a reference book for people working in the subject. The book is written by physicists, uses the language of physics and I am sure that many physicists will read it with great pleasure.
Products of Random Matrices
Author: Andrea Crisanti
Publisher: Springer Science & Business Media
ISBN: 3642849423
Category : Science
Languages : en
Pages : 172
Book Description
At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been obtained in recent years and much progress has been made, we still lack a satisfactory understanding of the extremely wide variety of phenomena which are present in these fields. The study of disordered or chaotic systems is the new frontier where new ideas and techniques are being developed. More interesting and deep results are expected to come in future years. The properties of random matrices and their products form a basic tool, whose importance cannot be underestimated. They playa role as important as Fourier transforms for differential equations. This book is extremely interesting as far as it presents a unified approach for the main results which have been obtained in the study of random ma trices. It will become a reference book for people working in the subject. The book is written by physicists, uses the language of physics and I am sure that many physicists will read it with great pleasure.
Publisher: Springer Science & Business Media
ISBN: 3642849423
Category : Science
Languages : en
Pages : 172
Book Description
At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been obtained in recent years and much progress has been made, we still lack a satisfactory understanding of the extremely wide variety of phenomena which are present in these fields. The study of disordered or chaotic systems is the new frontier where new ideas and techniques are being developed. More interesting and deep results are expected to come in future years. The properties of random matrices and their products form a basic tool, whose importance cannot be underestimated. They playa role as important as Fourier transforms for differential equations. This book is extremely interesting as far as it presents a unified approach for the main results which have been obtained in the study of random ma trices. It will become a reference book for people working in the subject. The book is written by physicists, uses the language of physics and I am sure that many physicists will read it with great pleasure.
Topics in Random Matrix Theory
Author: Terence Tao
Publisher: American Mathematical Soc.
ISBN: 0821874306
Category : Mathematics
Languages : en
Pages : 298
Book Description
The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.
Publisher: American Mathematical Soc.
ISBN: 0821874306
Category : Mathematics
Languages : en
Pages : 298
Book Description
The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.
Products of Random Matrices with Applications to Schrödinger Operators
Author: P. Bougerol
Publisher: Springer Science & Business Media
ISBN: 1468491725
Category : Mathematics
Languages : en
Pages : 290
Book Description
CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRÖDINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRÖDINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrödinger operator in 253 a strip 259 2. Ergodie Schrödinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P.
Publisher: Springer Science & Business Media
ISBN: 1468491725
Category : Mathematics
Languages : en
Pages : 290
Book Description
CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRÖDINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRÖDINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrödinger operator in 253 a strip 259 2. Ergodie Schrödinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P.
A First Course in Random Matrix Theory
Author: Marc Potters
Publisher: Cambridge University Press
ISBN: 1108488080
Category : Computers
Languages : en
Pages : 371
Book Description
An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
Publisher: Cambridge University Press
ISBN: 1108488080
Category : Computers
Languages : en
Pages : 371
Book Description
An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
An Introduction to Random Matrices
Author: Greg W. Anderson
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507
Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507
Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Introduction to Random Matrices
Author: Giacomo Livan
Publisher: Springer
ISBN: 3319708856
Category : Science
Languages : en
Pages : 122
Book Description
Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.
Publisher: Springer
ISBN: 3319708856
Category : Science
Languages : en
Pages : 122
Book Description
Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.
Spectral Analysis of Large Dimensional Random Matrices
Author: Zhidong Bai
Publisher: Springer Science & Business Media
ISBN: 1441906614
Category : Mathematics
Languages : en
Pages : 560
Book Description
The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.
Publisher: Springer Science & Business Media
ISBN: 1441906614
Category : Mathematics
Languages : en
Pages : 560
Book Description
The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.
Eigenvalue Distribution of Large Random Matrices
Author: Leonid Andreevich Pastur
Publisher: American Mathematical Soc.
ISBN: 082185285X
Category : Mathematics
Languages : en
Pages : 650
Book Description
Random matrix theory is a wide and growing field with a variety of concepts, results, and techniques and a vast range of applications in mathematics and the related sciences. The book, written by well-known experts, offers beginners a fairly balanced collection of basic facts and methods (Part 1 on classical ensembles) and presents experts with an exposition of recent advances in the subject (Parts 2 and 3 on invariant ensembles and ensembles with independent entries). The text includes many of the authors' results and methods on several main aspects of the theory, thus allowing them to present a unique and personal perspective on the subject and to cover many topics using a unified approach essentially based on the Stieltjes transform and orthogonal polynomials. The exposition is supplemented by numerous comments, remarks, and problems. This results in a book that presents a detailed and self-contained treatment of the basic random matrix ensembles and asymptotic regimes. This book will be an important reference for researchers in a variety of areas of mathematics and mathematical physics. Various chapters of the book can be used for graduate courses; the main prerequisite is a basic knowledge of calculus, linear algebra, and probability theory.
Publisher: American Mathematical Soc.
ISBN: 082185285X
Category : Mathematics
Languages : en
Pages : 650
Book Description
Random matrix theory is a wide and growing field with a variety of concepts, results, and techniques and a vast range of applications in mathematics and the related sciences. The book, written by well-known experts, offers beginners a fairly balanced collection of basic facts and methods (Part 1 on classical ensembles) and presents experts with an exposition of recent advances in the subject (Parts 2 and 3 on invariant ensembles and ensembles with independent entries). The text includes many of the authors' results and methods on several main aspects of the theory, thus allowing them to present a unique and personal perspective on the subject and to cover many topics using a unified approach essentially based on the Stieltjes transform and orthogonal polynomials. The exposition is supplemented by numerous comments, remarks, and problems. This results in a book that presents a detailed and self-contained treatment of the basic random matrix ensembles and asymptotic regimes. This book will be an important reference for researchers in a variety of areas of mathematics and mathematical physics. Various chapters of the book can be used for graduate courses; the main prerequisite is a basic knowledge of calculus, linear algebra, and probability theory.
Log-Gases and Random Matrices (LMS-34)
Author: Peter J. Forrester
Publisher: Princeton University Press
ISBN: 1400835410
Category : Mathematics
Languages : en
Pages : 808
Book Description
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.
Publisher: Princeton University Press
ISBN: 1400835410
Category : Mathematics
Languages : en
Pages : 808
Book Description
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.
Applications of Random Matrices in Physics
Author: Édouard Brezin
Publisher: Springer Science & Business Media
ISBN: 140204531X
Category : Science
Languages : en
Pages : 519
Book Description
Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the general culture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories. The book consists of the lectures of the leading specialists and covers rather systematically many of these topics. It can be useful to the specialists in various subjects using random matrices, from PhD students to confirmed scientists.
Publisher: Springer Science & Business Media
ISBN: 140204531X
Category : Science
Languages : en
Pages : 519
Book Description
Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the general culture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories. The book consists of the lectures of the leading specialists and covers rather systematically many of these topics. It can be useful to the specialists in various subjects using random matrices, from PhD students to confirmed scientists.