Top Quark Mass Measurements at the Tevatron and the Standard Model Fits PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Top Quark Mass Measurements at the Tevatron and the Standard Model Fits PDF full book. Access full book title Top Quark Mass Measurements at the Tevatron and the Standard Model Fits by . Download full books in PDF and EPUB format.

Top Quark Mass Measurements at the Tevatron and the Standard Model Fits

Top Quark Mass Measurements at the Tevatron and the Standard Model Fits PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
New measurements of the top quark mass from the Tevatron are presented. Combined with previous results, they yield a preliminary new world average of m{sub top} = 170.9 ± 1.1(stat) ± 1.5(syst)GeV/c2 and impose new constraints on the mass of the Higgs boson.

Top Quark Mass Measurements at the Tevatron and the Standard Model Fits

Top Quark Mass Measurements at the Tevatron and the Standard Model Fits PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
New measurements of the top quark mass from the Tevatron are presented. Combined with previous results, they yield a preliminary new world average of m{sub top} = 170.9 ± 1.1(stat) ± 1.5(syst)GeV/c2 and impose new constraints on the mass of the Higgs boson.

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method PDF Author: Alexander Grohsjean
Publisher: Springer Science & Business Media
ISBN: 364214070X
Category : Science
Languages : en
Pages : 155

Book Description
The main pacemakers of scienti?c research are curiosity, ingenuity, and a pinch of persistence. Equipped with these characteristics a young researcher will be s- cessful in pushing scienti?c discoveries. And there is still a lot to discover and to understand. In the course of understanding the origin and structure of matter it is now known that all matter is made up of six types of quarks. Each of these carry a different mass. But neither are the particular mass values understood nor is it known why elementary particles carry mass at all. One could perhaps accept some small generic mass value for every quark, but nature has decided differently. Two quarks are extremely light, three more have a somewhat typical mass value, but one quark is extremely massive. It is the top quark, the heaviest quark and even the heaviest elementary particle that we know, carrying a mass as large as the mass of three iron nuclei. Even though there exists no explanation of why different particle types carry certain masses, the internal consistency of the currently best theory—the standard model of particle physics—yields a relation between the masses of the top quark, the so-called W boson, and the yet unobserved Higgs particle. Therefore, when one assumes validity of the model, it is even possible to take precise measurements of the top quark mass to predict the mass of the Higgs (and potentially other yet unobserved) particles.

Top Mass Measurements at the Tevatron

Top Mass Measurements at the Tevatron PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
First observed in 1995, the top quark is the third-generation up-type quark of the standard model of particle physics (SM). The CDF and D0 collaborations have analyzed many t{bar t} events produced by the Tevatron collider, studying many properties of the top quark. Among these, the mass of the top quark is a fundamental parameter of the SM, since its value constrains the mass of the yet to be observed Higgs boson. The analyzed events were used to measure the mass of the top quark m{sub t} ≃ 173.2 GeV/c2 with an uncertainty of less than 1 GeV/c2. We report on the latest top mass measurements at the Tevatron, using up to 6 fb−1 of data for each experiment.

Top Quark Physics at Hadron Colliders

Top Quark Physics at Hadron Colliders PDF Author: Arnulf Quadt
Publisher: Springer Science & Business Media
ISBN: 3540710604
Category : Science
Languages : en
Pages : 166

Book Description
This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.

Top Quark Physics at the Tevatron

Top Quark Physics at the Tevatron PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
An overview of recent top quark measurements using the full Run II data set of CDF or D0 at the Tevatron is presented. Results are complementary to the ones at the LHC. Recent measurements of the production cross section of top quarks in strong and electroweak production and of top quark production asymmetries are presented. The latter includes the measurement of the tt-bar production asymmetry by D0 in the dilepton decay channel. Within their uncertainties the results from all these measurements agree with their respective Standard Model expectation. Finally latest updates on measurements of the top quark mass are discussed, which at the time of the conference are the most precise determinations.

Measurements of Top Quark Properties at the Tevatron Collider

Measurements of Top Quark Properties at the Tevatron Collider PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The discovery of the top quark in 1995 opened a whole new sector of investigation of the Standard Model; today top quark physics remains a key priority of the Tevatron program. Some of the measurements of top quark properties, for example its mass, will be a long-standing legacy. The recent evidence of an anomalously large charge asymmetry in top quark events suggests that new physics could couple preferably with top quarks. I will summarize this long chapter of particle physics history and discuss the road the top quark is highlighting for the LHC program.

Measurements of the Top Quark Mass at the Tevatron

Measurements of the Top Quark Mass at the Tevatron PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
The mass of the top quark (m{sub top}) is a fundamental parameter of the standard model (SM). Currently, its most precise measurements are performed by the CDF and D0 collaborations at the Fermilab Tevatron p{bar p} collider at a centre-of-mass energy of √s = 1.96 TeV. We review the most recent of those measurements, performed on data samples of up to 8.7 fb−1 of integrated luminosity. The Tevatron combination using up to 5.8 fb−1 of data results in a preliminary world average top quark mass of m{sub top} = 173.2 ± 0.9 GeV. This corresponds to a relative precision of about 0.54%. We conclude with an outlook of anticipated precision the final measurement of m{sub top} at the Tevatron.

Top Quark Mass Measurements

Top Quark Mass Measurements PDF Author: A. P. Heinson
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and D0 collaborations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quark's mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass.

Top Quark Pair Production

Top Quark Pair Production PDF Author: Anna Christine Henrichs
Publisher: Springer Science & Business Media
ISBN: 3319014870
Category : Science
Languages : en
Pages : 231

Book Description
Before any kind of new physics discovery could be made at the LHC, a precise understanding and measurement of the Standard Model of particle physics' processes was necessary. The book provides an introduction to top quark production in the context of the Standard Model and presents two such precise measurements of the production of top quark pairs in proton-proton collisions at a center-of-mass energy of 7 TeV that were observed with the ATLAS Experiment at the LHC. The presented measurements focus on events with one charged lepton, missing transverse energy and jets. Using novel and advanced analysis techniques as well as a good understanding of the detector, they constitute the most precise measurements of the quantity at that time.

Measurements and Searches with Top Quarks

Measurements and Searches with Top Quarks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 254

Book Description
In 1995 the last missing member of the known families of quarks, the top quark, was discovered by the CDF and D0 experiments at the Tevatron, a proton-antiproton collider at Fermilab near Chicago. Until today, the Tevatron is the only place where top quarks can be produced. The determination of top quark production and properties is crucial to understand the Standard Model of particle physics and beyond. The most striking property of the top quark is its mass--of the order of the mass of a gold atom and close to the electroweak scale--making the top quark not only interesting in itself but also as a window to new physics. Due to the high mass, much higher than of any other known fermion, it is expected that the top quark plays an important role in electroweak symmetry breaking, which is the most prominent candidate to explain the mass of particles. In the Standard Model, electroweak symmetry breaking is induced by one Higgs field, producing one additional physical particle, the Higgs boson. Although various searches have been performed, for example at the Large Electron Positron Collider (LEP), no evidence for the Higgs boson could yet be found in any experiment. At the Tevatron, multiple searches for the last missing particle of the Standard Model are ongoing with ever higher statistics and improved analysis techniques. The exclusion or verification of the Higgs boson can only be achieved by combining many techniques and many final states and production mechanisms. As part of this thesis, the search for Higgs bosons produced in association with a top quark pair (t{bar t}H) has been performed. This channel is especially interesting for the understanding of the coupling between Higgs and the top quark. Even though the Standard Model Higgs boson is an attractive candidate, there is no reason to believe that the electroweak symmetry breaking is induced by only one Higgs field. In many models more than one Higgs boson are expected to exist, opening even more channels to search for charged or neutral Higgs bosons. Depending on its mass, the charged Higgs boson is expected to decay either into top quarks or be the decay product of a top quark. For masses below the top quark mass, the top decay into a charged Higgs boson and a b quark can occur at a certain rate, additionally to the decays into W bosons and a b quark. The different decays of W and charged Higgs bosons can lead to deviations of the observed final number of events in certain final states with respect to the Standard Model expectation. A global search for charged Higgs bosons in top quark pair events is presented in this thesis, resulting in the most stringent limits to-date. Besides the decay of top quarks into charged Higgs or W bosons, new physics can also show up in the quark part of the decay. While in the Standard Model the top quark decays with a rate of about 100% into a W boson and a b quark, there are models where the top quark can decay into a W boson and a non-b quark. The ratio of branching fractions in which the top quark decays into a b quark over the branching fractions in which the top quark decays into all quarks is measured as part of this thesis, yielding the most precise measurement today. Furthermore, the Standard Model top quark pair production cross section is essential to be known precisely since the top quark pair production is the main background for t{bar t}H production and many other Higgs and beyond the Standard Model searches. However, not only the search or the test of the Standard Model itself make the precise measurement of the top quark pair production cross section interesting. As the cross section is calculated with high accuracy in perturbative QCD, a comparison of the measurement to the theory expectation yields the possibility to extract the top quark mass from the cross section measurement. Although many dedicated techniques exist to measure the top quark mass, the extraction from the cross section represents an important complementary measurement. The latter is briefly discussed in this thesis and compared to direct top mass measurements. The goal of this thesis is the improved understanding of the top quark sector and its use as a window to new physics. Techniques are extended and developed to measure the top quark pair production cross section simultaneously with the ratio of branching fractions, the t{bar t}H cross section or the rate with which top quarks decay into charged Higgs bosons. Some of the results are then taken to extract more information. The cross section measurement is used to extract the top quark mass, and the ratio of the top quark pair production cross sections in different final states, yielding a limit on non-Standard Model top quark decays.