Top 15 ways to make money using neural networks. Achieve financial goals PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Top 15 ways to make money using neural networks. Achieve financial goals PDF full book. Access full book title Top 15 ways to make money using neural networks. Achieve financial goals by Алексей Сабадырь. Download full books in PDF and EPUB format.

Top 15 ways to make money using neural networks. Achieve financial goals

Top 15 ways to make money using neural networks. Achieve financial goals PDF Author: Алексей Сабадырь
Publisher: Litres
ISBN: 5046873516
Category : Computers
Languages : en
Pages : 46

Book Description
This book is a guide to the world of artificial intelligence, where you will learn how to use the power of neural networks to achieve financial goals.Creating content using neural networks: articles, social media posts, video scripts, product descriptions, literary works.Design and development: logos, banners, illustrations, websites and even applications.Translations: quickly and efficiently translate texts using AI.Create chatbots, program applications and optimize business processes.

Top 15 ways to make money using neural networks. Achieve financial goals

Top 15 ways to make money using neural networks. Achieve financial goals PDF Author: Алексей Сабадырь
Publisher: Litres
ISBN: 5046873516
Category : Computers
Languages : en
Pages : 46

Book Description
This book is a guide to the world of artificial intelligence, where you will learn how to use the power of neural networks to achieve financial goals.Creating content using neural networks: articles, social media posts, video scripts, product descriptions, literary works.Design and development: logos, banners, illustrations, websites and even applications.Translations: quickly and efficiently translate texts using AI.Create chatbots, program applications and optimize business processes.

The Front Office

The Front Office PDF Author: Tom Costello
Publisher: Https: //Www.Isbnservices.COM
ISBN: 9781637958476
Category :
Languages : en
Pages : 344

Book Description
Getting into the Hedge Fund industry is hard, being successful in the hedge fund industry is even harder. But the most successful people in the hedge fund industry all have some ideas in common that often mean the difference between success and failure. The Front Office is a guide to those ideas. It's a manual for learning how to think about markets in the way that's most likely to lead to sustained success in the way that the top Institutions, Investment Banks and Hedge Funds do. Anyone can tell you how to register a corporation or how to connect to a lawyer or broker. This isn't a book about those 'back office' issues. This is a book about the hardest part of running a hedge fund. The part that the vast majority of small hedge funds and trading system developers never learn on their own. The part that the accountants, settlement clerks, and back office staffers don't ever see. It explains why some trading systems never reach profitability, why some can't seem to stay profitable, and what to do about it if that happens to you. This isn't a get rich quick book for your average investor. There are no easy answers in it. If you need someone to explain what a stock option is or what Beta means, you should look somewhere else. But if you think you're ready to reach for the brass ring of a career in the institutional investing world, this is an excellent guide. This book explains what those people see when they look at the markets, and what nearly all of the other investors never do.

Bold

Bold PDF Author: Peter H. Diamandis
Publisher: Simon and Schuster
ISBN: 1476709580
Category : Business & Economics
Languages : en
Pages : 336

Book Description
Bold is a radical how-to guide for using exponential technologies, moonshot thinking, and crowd-powered tools to create extraordinary wealth while also positively impacting the lives of billions. A follow-up to the authors' Abundance (2012).

Empirical Asset Pricing

Empirical Asset Pricing PDF Author: Wayne Ferson
Publisher: MIT Press
ISBN: 0262039370
Category : Business & Economics
Languages : en
Pages : 497

Book Description
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.

Fuzzy Logic for Beginners

Fuzzy Logic for Beginners PDF Author: Masao Mukaidono
Publisher: World Scientific
ISBN: 9810245343
Category : Computers
Languages : en
Pages : 117

Book Description
There are many uncertainties in the real world. Fuzzy theory treats a kind of uncertainty called fuzziness, where it shows that the boundary of yes or no is ambiguous and appears in the meaning of words or is included in the subjunctives or recognition of human beings. Fuzzy theory is essential and is applicable to many systems -- from consumer products like washing machines or refrigerators to big systems like trains or subways. Recently, fuzzy theory has been a strong tool for combining new theories (called soft computing) such as genetic algorithms or neural networks to get knowledge from real data. This introductory book enables the reader to understand easily what fuzziness is and how one can apply fuzzy theory to real problems -- which explains why it was a best-seller in Japan.

Advances in Financial Machine Learning

Advances in Financial Machine Learning PDF Author: Marcos Lopez de Prado
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395

Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Python Machine Learning

Python Machine Learning PDF Author: Sebastian Raschka
Publisher: Packt Publishing Ltd
ISBN: 1783555149
Category : Computers
Languages : en
Pages : 455

Book Description
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Machine Learning for Algorithmic Trading

Machine Learning for Algorithmic Trading PDF Author: Stefan Jansen
Publisher: Packt Publishing Ltd
ISBN: 1839216786
Category : Business & Economics
Languages : en
Pages : 822

Book Description
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

CIO

CIO PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 68

Book Description


Introduction to Deep Learning

Introduction to Deep Learning PDF Author: Sandro Skansi
Publisher: Springer
ISBN: 3319730045
Category : Computers
Languages : en
Pages : 196

Book Description
This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.