Author: Rainer Keller
Publisher: Springer Science & Business Media
ISBN: 3540685642
Category : Computers
Languages : en
Pages : 203
Book Description
Developing software for current and especially for future architectures will require knowledge about parallel programming techniques of applications and library p- grammers. Multi-core processors are already available today, and processors with a dozen and more cores are on the horizon. The major driving force in hardware development, the game industry, has - ready shown interest in using parallel programming paradigms, such as OpenMP for further developments. Therefore developers have to be supported in the even more complex task of programming for these new architectures. HLRS has a long-lasting tradition of providing its user community with the most up-to-date software tools. Additionally, important research and development projects are worked on at the center: among the software packages developed are the MPI correctness checker Marmot, the OpenMP validation suite and the M- implementations PACX-MPI and Open MPI. All of these software packages are - ing extended in the context of German and European community research projects, such as ParMA, the InterActive European Grid (I2G) project and the German C- laborative Research Center (Sonderforschungsbereich 716). Furthermore, ind- trial collaborations, i.e. with Intel and Microsoft allow HLRS to get its software production-grade ready. In April 2007, a European project on Parallel Programming for Multi-core - chitectures, in short ParMA was launched, with a major focus on providing and developing tools for parallel programming.
Tools for High Performance Computing
Author: Rainer Keller
Publisher: Springer Science & Business Media
ISBN: 3540685642
Category : Computers
Languages : en
Pages : 203
Book Description
Developing software for current and especially for future architectures will require knowledge about parallel programming techniques of applications and library p- grammers. Multi-core processors are already available today, and processors with a dozen and more cores are on the horizon. The major driving force in hardware development, the game industry, has - ready shown interest in using parallel programming paradigms, such as OpenMP for further developments. Therefore developers have to be supported in the even more complex task of programming for these new architectures. HLRS has a long-lasting tradition of providing its user community with the most up-to-date software tools. Additionally, important research and development projects are worked on at the center: among the software packages developed are the MPI correctness checker Marmot, the OpenMP validation suite and the M- implementations PACX-MPI and Open MPI. All of these software packages are - ing extended in the context of German and European community research projects, such as ParMA, the InterActive European Grid (I2G) project and the German C- laborative Research Center (Sonderforschungsbereich 716). Furthermore, ind- trial collaborations, i.e. with Intel and Microsoft allow HLRS to get its software production-grade ready. In April 2007, a European project on Parallel Programming for Multi-core - chitectures, in short ParMA was launched, with a major focus on providing and developing tools for parallel programming.
Publisher: Springer Science & Business Media
ISBN: 3540685642
Category : Computers
Languages : en
Pages : 203
Book Description
Developing software for current and especially for future architectures will require knowledge about parallel programming techniques of applications and library p- grammers. Multi-core processors are already available today, and processors with a dozen and more cores are on the horizon. The major driving force in hardware development, the game industry, has - ready shown interest in using parallel programming paradigms, such as OpenMP for further developments. Therefore developers have to be supported in the even more complex task of programming for these new architectures. HLRS has a long-lasting tradition of providing its user community with the most up-to-date software tools. Additionally, important research and development projects are worked on at the center: among the software packages developed are the MPI correctness checker Marmot, the OpenMP validation suite and the M- implementations PACX-MPI and Open MPI. All of these software packages are - ing extended in the context of German and European community research projects, such as ParMA, the InterActive European Grid (I2G) project and the German C- laborative Research Center (Sonderforschungsbereich 716). Furthermore, ind- trial collaborations, i.e. with Intel and Microsoft allow HLRS to get its software production-grade ready. In April 2007, a European project on Parallel Programming for Multi-core - chitectures, in short ParMA was launched, with a major focus on providing and developing tools for parallel programming.
Tools and Techniques for High Performance Computing
Author: Guido Juckeland
Publisher: Springer Nature
ISBN: 3030447286
Category : Computers
Languages : en
Pages : 213
Book Description
This book constitutes the refereed proceedings of 3 workshops co-located with International Conference for High Performance Computing, Networking, Storage, and Analysis, SC19, held in Denver, CO, USA, in November 2019. The 12 full papers presented in this proceedings feature the outcome of the 6th Annual Workshop on HPC User Support Tools, HUST 2019, International Workshop on Software Engineering for HPC-Enabled Research, SE-HER 2019, and Third Workshop on Interactive High-Performance Computing, WIHPC 2019.
Publisher: Springer Nature
ISBN: 3030447286
Category : Computers
Languages : en
Pages : 213
Book Description
This book constitutes the refereed proceedings of 3 workshops co-located with International Conference for High Performance Computing, Networking, Storage, and Analysis, SC19, held in Denver, CO, USA, in November 2019. The 12 full papers presented in this proceedings feature the outcome of the 6th Annual Workshop on HPC User Support Tools, HUST 2019, International Workshop on Software Engineering for HPC-Enabled Research, SE-HER 2019, and Third Workshop on Interactive High-Performance Computing, WIHPC 2019.
High Performance Computing
Author: Thomas Sterling
Publisher: Morgan Kaufmann
ISBN: 032390212X
Category : Computers
Languages : en
Pages : 537
Book Description
Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, students will begin their careers with an understanding of possible directions for future research and development in HPC, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge, and practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products. This new edition has been fully updated, and has been reorganized and restructured to improve accessibility for undergraduate students while also adding trending content such as machine learning and a new chapter on CUDA. - Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators, and big data problems - Provides numerous examples that explore the basics of supercomputing while also providing practical training in the real use of high-end computers - Helps users with informative and practical examples that build knowledge and skills through incremental steps - Features sidebars of background and context to present a live history and culture of this unique field
Publisher: Morgan Kaufmann
ISBN: 032390212X
Category : Computers
Languages : en
Pages : 537
Book Description
Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, students will begin their careers with an understanding of possible directions for future research and development in HPC, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge, and practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products. This new edition has been fully updated, and has been reorganized and restructured to improve accessibility for undergraduate students while also adding trending content such as machine learning and a new chapter on CUDA. - Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators, and big data problems - Provides numerous examples that explore the basics of supercomputing while also providing practical training in the real use of high-end computers - Helps users with informative and practical examples that build knowledge and skills through incremental steps - Features sidebars of background and context to present a live history and culture of this unique field
Software Optimization for High-performance Computing
Author: Kevin R. Wadleigh
Publisher: Prentice Hall Professional
ISBN: 9780130170088
Category : Computers
Languages : en
Pages : 414
Book Description
The hands-on guide to high-performance coding and algorithm optimization. This hands-on guide to software optimization introduces state-of-the-art solutions for every key aspect of software performance - both code-based and algorithm-based. Two leading HP software performance experts offer comparative optimization strategies for RISC and for the new Explicitly Parallel Instruction Computing (EPIC) design used in Intel IA-64 processors. Using many practical examples, they offer specific techniques for: Predicting and measuring performance - and identifying your best optimization opportunities Storage optimization: cache, system memory, virtual memory, and I/0 Parallel processing: distributed-memory and shared-memory (SMP and ccNUMA) Compilers and loop optimization Enhancing parallelism: compiler directives, threads, and message passing Mathematical libraries and algorithms Whether you're a developer, ISV, or technical researcher, if you need to optimize high-performance software on today's leading processors, one book delivers the advanced techniques and code examples you need: Software Optimization for High Performance Computing.
Publisher: Prentice Hall Professional
ISBN: 9780130170088
Category : Computers
Languages : en
Pages : 414
Book Description
The hands-on guide to high-performance coding and algorithm optimization. This hands-on guide to software optimization introduces state-of-the-art solutions for every key aspect of software performance - both code-based and algorithm-based. Two leading HP software performance experts offer comparative optimization strategies for RISC and for the new Explicitly Parallel Instruction Computing (EPIC) design used in Intel IA-64 processors. Using many practical examples, they offer specific techniques for: Predicting and measuring performance - and identifying your best optimization opportunities Storage optimization: cache, system memory, virtual memory, and I/0 Parallel processing: distributed-memory and shared-memory (SMP and ccNUMA) Compilers and loop optimization Enhancing parallelism: compiler directives, threads, and message passing Mathematical libraries and algorithms Whether you're a developer, ISV, or technical researcher, if you need to optimize high-performance software on today's leading processors, one book delivers the advanced techniques and code examples you need: Software Optimization for High Performance Computing.
Applications, Tools and Techniques on the Road to Exascale Computing
Author: Koen de Bosschere
Publisher: IOS Press
ISBN: 1614990409
Category : Computers
Languages : en
Pages : 688
Book Description
Single processing units have now reached a point where further major improvements in their performance are restricted by their physical limitations. This is causing a slowing down in advances at the same time as new scientific challenges are demanding exascale speed. This has meant that parallel processing has become key to High Performance Computing (HPC). This book contains the proceedings of the 14th biennial ParCo conference, ParCo2011, held in Ghent, Belgium. The ParCo conferences have traditionally concentrated on three main themes: Algorithms, Architectures and Applications. Nowadays though, the focus has shifted from traditional multiprocessor topologies to heterogeneous and manycores, incorporating standard CPUs, GPUs (Graphics Processing Units) and FPGAs (Field Programmable Gate Arrays). These platforms are, at a higher abstraction level, integrated in clusters, grids and clouds. The papers presented here reflect this change of focus. New architectures, programming tools and techniques are also explored, and the need for exascale hardware and software was also discussed in the industrial session of the conference.This book will be of interest to all those interested in parallel computing today, and progress towards the exascale computing of tomorrow.
Publisher: IOS Press
ISBN: 1614990409
Category : Computers
Languages : en
Pages : 688
Book Description
Single processing units have now reached a point where further major improvements in their performance are restricted by their physical limitations. This is causing a slowing down in advances at the same time as new scientific challenges are demanding exascale speed. This has meant that parallel processing has become key to High Performance Computing (HPC). This book contains the proceedings of the 14th biennial ParCo conference, ParCo2011, held in Ghent, Belgium. The ParCo conferences have traditionally concentrated on three main themes: Algorithms, Architectures and Applications. Nowadays though, the focus has shifted from traditional multiprocessor topologies to heterogeneous and manycores, incorporating standard CPUs, GPUs (Graphics Processing Units) and FPGAs (Field Programmable Gate Arrays). These platforms are, at a higher abstraction level, integrated in clusters, grids and clouds. The papers presented here reflect this change of focus. New architectures, programming tools and techniques are also explored, and the need for exascale hardware and software was also discussed in the industrial session of the conference.This book will be of interest to all those interested in parallel computing today, and progress towards the exascale computing of tomorrow.
Introduction to High Performance Computing for Scientists and Engineers
Author: Georg Hager
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350
Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350
Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
Advances in High Performance Computing
Author: Ivan Dimov
Publisher: Springer Nature
ISBN: 3030553477
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Every day we need to solve large problems for which supercomputers are needed. High performance computing (HPC) is a paradigm that allows to efficiently implement large-scale computational tasks on powerful supercomputers unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many challenging real world problems arising in engineering, economics, medicine and other areas can be formulated as large-scale computational tasks. The volume is a comprehensive collection of extended contributions from the High performance computing conference held in Borovets, Bulgaria, September 2019. This book presents recent advances in high performance computing. The topics of interest included into this volume are: HP software tools, Parallel Algorithms and Scalability, HPC in Big Data analytics, Modelling, Simulation & Optimization in a Data Rich Environment, Advanced numerical methods for HPC, Hybrid parallel or distributed algorithms. The volume is focused on important large-scale applications like Environmental and Climate Modeling, Computational Chemistry and Heuristic Algorithms.
Publisher: Springer Nature
ISBN: 3030553477
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Every day we need to solve large problems for which supercomputers are needed. High performance computing (HPC) is a paradigm that allows to efficiently implement large-scale computational tasks on powerful supercomputers unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many challenging real world problems arising in engineering, economics, medicine and other areas can be formulated as large-scale computational tasks. The volume is a comprehensive collection of extended contributions from the High performance computing conference held in Borovets, Bulgaria, September 2019. This book presents recent advances in high performance computing. The topics of interest included into this volume are: HP software tools, Parallel Algorithms and Scalability, HPC in Big Data analytics, Modelling, Simulation & Optimization in a Data Rich Environment, Advanced numerical methods for HPC, Hybrid parallel or distributed algorithms. The volume is focused on important large-scale applications like Environmental and Climate Modeling, Computational Chemistry and Heuristic Algorithms.
Introduction to High Performance Scientific Computing
Author: Victor Eijkhout
Publisher: Lulu.com
ISBN: 1257992546
Category : Computers
Languages : en
Pages : 536
Book Description
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.
Publisher: Lulu.com
ISBN: 1257992546
Category : Computers
Languages : en
Pages : 536
Book Description
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.
Parallel and High Performance Computing
Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Advances in Mathematical Methods and High Performance Computing
Author: Vinai K. Singh
Publisher: Springer
ISBN: 9783030024864
Category : Computers
Languages : en
Pages : 503
Book Description
This special volume of the conference will be of immense use to the researchers and academicians. In this conference, academicians, technocrats and researchers will get an opportunity to interact with eminent persons in the field of Applied Mathematics and Scientific Computing. The topics to be covered in this International Conference are comprehensive and will be adequate for developing and understanding about new developments and emerging trends in this area. High-Performance Computing (HPC) systems have gone through many changes during the past two decades in their architectural design to satisfy the increasingly large-scale scientific computing demand. Accurate, fast, and scalable performance models and simulation tools are essential for evaluating alternative architecture design decisions for the massive-scale computing systems. This conference recounts some of the influential work in modeling and simulation for HPC systems and applications, identifies some of the major challenges, and outlines future research directions which we believe are critical to the HPC modeling and simulation community.
Publisher: Springer
ISBN: 9783030024864
Category : Computers
Languages : en
Pages : 503
Book Description
This special volume of the conference will be of immense use to the researchers and academicians. In this conference, academicians, technocrats and researchers will get an opportunity to interact with eminent persons in the field of Applied Mathematics and Scientific Computing. The topics to be covered in this International Conference are comprehensive and will be adequate for developing and understanding about new developments and emerging trends in this area. High-Performance Computing (HPC) systems have gone through many changes during the past two decades in their architectural design to satisfy the increasingly large-scale scientific computing demand. Accurate, fast, and scalable performance models and simulation tools are essential for evaluating alternative architecture design decisions for the massive-scale computing systems. This conference recounts some of the influential work in modeling and simulation for HPC systems and applications, identifies some of the major challenges, and outlines future research directions which we believe are critical to the HPC modeling and simulation community.