Time Series and Related Topics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Time Series and Related Topics PDF full book. Access full book title Time Series and Related Topics by Ching-Zong Wei. Download full books in PDF and EPUB format.

Time Series and Related Topics

Time Series and Related Topics PDF Author: Ching-Zong Wei
Publisher: IMS
ISBN: 9780940600683
Category : Mathematics
Languages : en
Pages : 314

Book Description


Time Series and Related Topics

Time Series and Related Topics PDF Author: Ching-Zong Wei
Publisher: IMS
ISBN: 9780940600683
Category : Mathematics
Languages : en
Pages : 314

Book Description


Topics In Nonlinear Time Series Analysis, With Implications For Eeg Analysis

Topics In Nonlinear Time Series Analysis, With Implications For Eeg Analysis PDF Author: Andreas Galka
Publisher: World Scientific
ISBN: 9814493929
Category : Science
Languages : en
Pages : 360

Book Description
This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented — algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram.

Modeling of Transport Demand

Modeling of Transport Demand PDF Author: V.A Profillidis
Publisher: Elsevier
ISBN: 0128115149
Category : Social Science
Languages : en
Pages : 500

Book Description
Modeling of Transport Demand explains the mechanisms of transport demand, from analysis to calculation and forecasting. Packed with strategies for forecasting future demand for all transport modes, the book helps readers assess the validity and accuracy of demand forecasts. Forecasting and evaluating transport demand is an essential task of transport professionals and researchers that affects the design, extension, operation, and maintenance of all transport infrastructures. Accurate demand forecasts are necessary for companies and government entities when planning future fleet size, human resource needs, revenues, expenses, and budgets. The operational and planning skills provided in Modeling of Transport Demand help readers solve the problems they face on a daily basis. Modeling of Transport Demand is written for researchers, professionals, undergraduate and graduate students at every stage in their careers, from novice to expert. The book assists those tasked with constructing qualitative models (based on executive judgment, Delphi, scenario writing, survey methods) or quantitative ones (based on statistical, time series, econometric, gravity, artificial neural network, and fuzzy methods) in choosing the most suitable solution for all types of transport applications. - Presents the most recent and relevant findings and research - both at theoretical and practical levels - of transport demand - Provides a theoretical analysis and formulations that are clearly presented for ease of understanding - Covers analysis for all modes of transportation - Includes case studies that present the most appropriate formulas and methods for finding solutions and evaluating results

Forecasting: principles and practice

Forecasting: principles and practice PDF Author: Rob J Hyndman
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380

Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Time Series Analysis and Forecasting by Example

Time Series Analysis and Forecasting by Example PDF Author: Søren Bisgaard
Publisher: John Wiley & Sons
ISBN: 1118056957
Category : Mathematics
Languages : en
Pages : 346

Book Description
An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in detail and explain the relevant theory while also focusing on the interpretation of results in data analysis. Following a discussion of why autocorrelation is often observed when data is collected in time, subsequent chapters explore related topics, including: Graphical tools in time series analysis Procedures for developing stationary, non-stationary, and seasonal models How to choose the best time series model Constant term and cancellation of terms in ARIMA models Forecasting using transfer function-noise models The final chapter is dedicated to key topics such as spurious relationships, autocorrelation in regression, and multiple time series. Throughout the book, real-world examples illustrate step-by-step procedures and instructions using statistical software packages such as SAS, JMP, Minitab, SCA, and R. A related Web site features PowerPoint slides to accompany each chapter as well as the book's data sets. With its extensive use of graphics and examples to explain key concepts, Time Series Analysis and Forecasting by Example is an excellent book for courses on time series analysis at the upper-undergraduate and graduate levels. it also serves as a valuable resource for practitioners and researchers who carry out data and time series analysis in the fields of engineering, business, and economics.

Time Series Analysis in Climatology and Related Sciences

Time Series Analysis in Climatology and Related Sciences PDF Author: Victor Privalsky
Publisher: Springer Nature
ISBN: 3030580555
Category : Science
Languages : en
Pages : 253

Book Description
This book gives the reader the basic knowledge of the theory of random processes necessary for applying to study climatic time series. It contains many examples in different areas of time series analysis such as autoregressive modelling and spectral analysis, linear extrapolation, simulation, causality, relations between scalar components of multivariate time series, and reconstructions of climate data. As an important feature, the book contains many practical examples and recommendations about how to deal and how not to deal with applied problems of time series analysis in climatology or any other science where the time series are short.

Analysis of Time Series Structure

Analysis of Time Series Structure PDF Author: Nina Golyandina
Publisher: CRC Press
ISBN: 9781420035841
Category : Mathematics
Languages : en
Pages : 322

Book Description
Over the last 15 years, singular spectrum analysis (SSA) has proven very successful. It has already become a standard tool in climatic and meteorological time series analysis and well known in nonlinear physics and signal processing. However, despite the promise it holds for time series applications in other disciplines, SSA is not widely known among statisticians and econometrists, and although the basic SSA algorithm looks simple, understanding what it does and where its pitfalls lay is by no means simple. Analysis of Time Series Structure: SSA and Related Techniques provides a careful, lucid description of its general theory and methodology. Part I introduces the basic concepts, and sets forth the main findings and results, then presents a detailed treatment of the methodology. After introducing the basic SSA algorithm, the authors explore forecasting and apply SSA ideas to change-point detection algorithms. Part II is devoted to the theory of SSA. Here the authors formulate and prove the statements of Part I. They address the singular value decomposition (SVD) of real matrices, time series of finite rank, and SVD of trajectory matrices. Based on the authors' original work and filled with applications illustrated with real data sets, this book offers an outstanding opportunity to obtain a working knowledge of why, when, and how SSA works. It builds a strong foundation for successfully using the technique in applications ranging from mathematics and nonlinear physics to economics, biology, oceanology, social science, engineering, financial econometrics, and market research.

Time Series Techniques for Economists

Time Series Techniques for Economists PDF Author: Terence C. Mills
Publisher: Cambridge University Press
ISBN: 9780521405744
Category : Business & Economics
Languages : en
Pages : 392

Book Description
The application of time series techniques in economics has become increasingly important, both for forecasting purposes and in the empirical analysis of time series in general. In this book, Terence Mills not only brings together recent research at the frontiers of the subject, but also analyses the areas of most importance to applied economics. It is an up-to-date text which extends the basic techniques of analysis to cover the development of methods that can be used to analyse a wide range of economic problems. The book analyses three basic areas of time series analysis: univariate models, multivariate models, and non-linear models. In each case the basic theory is outlined and then extended to cover recent developments. Particular emphasis is placed on applications of the theory to important areas of applied economics and on the computer software and programs needed to implement the techniques. This book clearly distinguishes itself from its competitors by emphasising the techniques of time series modelling rather than technical aspects such as estimation, and by the breadth of the models considered. It features many detailed real-world examples using a wide range of actual time series. It will be useful to econometricians and specialists in forecasting and finance and accessible to most practitioners in economics and the allied professions.

Theory and Applications of Time Series Analysis

Theory and Applications of Time Series Analysis PDF Author: Olga Valenzuela
Publisher: Springer Nature
ISBN: 3030562190
Category : Business & Economics
Languages : en
Pages : 460

Book Description
This book presents a selection of peer-reviewed contributions on the latest advances in time series analysis, presented at the International Conference on Time Series and Forecasting (ITISE 2019), held in Granada, Spain, on September 25-27, 2019. The first two parts of the book present theoretical contributions on statistical and advanced mathematical methods, and on econometric models, financial forecasting and risk analysis. The remaining four parts include practical contributions on time series analysis in energy; complex/big data time series and forecasting; time series analysis with computational intelligence; and time series analysis and prediction for other real-world problems. Given this mix of topics, readers will acquire a more comprehensive perspective on the field of time series analysis and forecasting. The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.

Practical Time Series Analysis

Practical Time Series Analysis PDF Author: Aileen Nielsen
Publisher: O'Reilly Media
ISBN: 1492041629
Category : Computers
Languages : en
Pages : 500

Book Description
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance