Time-resolved Characterization of Ultrashort Pulse Propagation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Time-resolved Characterization of Ultrashort Pulse Propagation PDF full book. Access full book title Time-resolved Characterization of Ultrashort Pulse Propagation by Matthew Murray Springer. Download full books in PDF and EPUB format.

Time-resolved Characterization of Ultrashort Pulse Propagation

Time-resolved Characterization of Ultrashort Pulse Propagation PDF Author: Matthew Murray Springer
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The propagation of ultrashort femtosecond laser pulses in linear dielectric materials is determined in the time, space, and frequency domains by linear Maxwell optics through dispersion and diffraction. For intense pulses, pulse propagation is additionally modified by nonlinearities in the medium such as the optical Kerr effect, plasma generation, and self-phase modulation. In this work we report the results of several experiments on the propagation of ultrashort pulses. In the linear regime, we characterize the temporal evolution of an ultrashort pulse during propagation through a linear dielectric under anomalous dispersion. Under these conditions the pulse evolution departs from the group velocity and group delay dispersion approximations, which leads to the formation of optical precursors. We describe an experiment which observes the propagation of optical precursors in a bulk condensed-matter dielectric. We generate ultrashort laser pulses and propagate the pulses through a bulk dye with an absorption resonance turned to the center wavelength of the femotsecond pulse. The pulse is then characterized in the time domain before and after propagation. Through numerical simulation we verify that the behavior of the precursors in the temporal pulse profille corresponds with the classical model. Under very high intensity laser pulses, the nonlinearities induced by the propagation of the intense ultrashort pulse produce changes in the complex refractive index of the nonlinear material. We report the results of experiments involving time-resolved imaging of the propagation of ultrashort pulses in dielectric materials. We experimentally observe and characterize these effects through a weak-probe imaging effect which directly measures the nonlinearity in a time-resolved manner. In these experiments an intense femtosecond laser pulse is propagated in a nonlinear intensity regime while an unfocused low-intensity femtosecond pulse is used as to probe the nonlinear pulse. We use this technique to characterize femtosecond pulses in air and liquid, especially in the regime of optical filamentation. We subsequently calculate parameters such as the plasma density, the transverse extent, and the instantaneous refractive index within the femtosecond laser fillament under conditions which are not accessible through most standard pulse measurement techniqes. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151868

Time-resolved Characterization of Ultrashort Pulse Propagation

Time-resolved Characterization of Ultrashort Pulse Propagation PDF Author: Matthew Murray Springer
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The propagation of ultrashort femtosecond laser pulses in linear dielectric materials is determined in the time, space, and frequency domains by linear Maxwell optics through dispersion and diffraction. For intense pulses, pulse propagation is additionally modified by nonlinearities in the medium such as the optical Kerr effect, plasma generation, and self-phase modulation. In this work we report the results of several experiments on the propagation of ultrashort pulses. In the linear regime, we characterize the temporal evolution of an ultrashort pulse during propagation through a linear dielectric under anomalous dispersion. Under these conditions the pulse evolution departs from the group velocity and group delay dispersion approximations, which leads to the formation of optical precursors. We describe an experiment which observes the propagation of optical precursors in a bulk condensed-matter dielectric. We generate ultrashort laser pulses and propagate the pulses through a bulk dye with an absorption resonance turned to the center wavelength of the femotsecond pulse. The pulse is then characterized in the time domain before and after propagation. Through numerical simulation we verify that the behavior of the precursors in the temporal pulse profille corresponds with the classical model. Under very high intensity laser pulses, the nonlinearities induced by the propagation of the intense ultrashort pulse produce changes in the complex refractive index of the nonlinear material. We report the results of experiments involving time-resolved imaging of the propagation of ultrashort pulses in dielectric materials. We experimentally observe and characterize these effects through a weak-probe imaging effect which directly measures the nonlinearity in a time-resolved manner. In these experiments an intense femtosecond laser pulse is propagated in a nonlinear intensity regime while an unfocused low-intensity femtosecond pulse is used as to probe the nonlinear pulse. We use this technique to characterize femtosecond pulses in air and liquid, especially in the regime of optical filamentation. We subsequently calculate parameters such as the plasma density, the transverse extent, and the instantaneous refractive index within the femtosecond laser fillament under conditions which are not accessible through most standard pulse measurement techniqes. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151868

Ultrashort Laser Pulse Phenomena

Ultrashort Laser Pulse Phenomena PDF Author: Jean-Claude Diels
Publisher: Elsevier
ISBN: 0080466400
Category : Science
Languages : en
Pages : 675

Book Description
Ultrashort Laser Pulse Phenomena, Second Edition serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). - Provides an easy to follow guide through "faster than electronics" probing and detection methods - THE manual on designing and constructing femtosecond systems and experiments - Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging

Method and Applications of Time-resolved Space-heterodyne Imaging

Method and Applications of Time-resolved Space-heterodyne Imaging PDF Author: Rostislav Rokitski
Publisher:
ISBN:
Category :
Languages : en
Pages : 106

Book Description
Technological progress in the ultrashort pulse laser physics and digital image acquisition and analysis systems opens broad opportunities for the new generation of optical characterization methods and tools for investigation of ultrafast phenomena in various research fields. Ultrashort optical pulses bring unprecedented temporal resolution, allowing characterization of ultrafast phenomena on the femtosecond time scale, while digital holography methods allow real time characterization of optical fields in amplitude and phase. In this dissertation we develop and demonstrate application of time-resolved spatial heterodyne interferometry -- a novel method for simultaneous spatial and temporal characterization of femtosecond-scale optical fields. We analyze spatial and temporal resolution of the method in single and two-photon absorption configurations and identify main limitations due to detector dynamic range, temporal shape of the reference optical pulse waveform and detection noise. Application of time-resolved spatial heterodyne interferometry is first demonstrated for characterization of ultrashort pulse propagation through multimode optical fibers. Complex optical field at the fiber output is reconstructed in time and space from single and two-photon absorption digital holograms yielding 3-dimensional optical impulse response of the multimode fiber. Optical impulse response of the fiber is found to critically depend on the coupling and environmental conditions, limiting applicability of the measured impulse response for signal equalization. Finally we demonstrate excitation and characterization of ultrafast surface plasmon polariton pulses, propagating on the surface of a nanostructured metallic film. Optical pulses are coupled from free space into various surface modes using a 2-dimensional array of circular nanoholes. Spatial amplitude and phase characteristics of the scattered surface field are measured with femtosecond-scale time resolution. Demonstrated in-plane focusing of SPP pulse provides additional electromagnetic field localization with possible applications in surface plasmon polariton nanophotonics, nonlinear surface dynamics, biochemical sensing and ultrafast surface studies.

Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses

Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses PDF Author: Rick Trebino
Publisher: Springer Science & Business Media
ISBN: 146151181X
Category : Science
Languages : en
Pages : 428

Book Description
The Frequency-Resolved Optical-Gating (FROG) technique has revolutionized our ability to measure and understand ultrashort laser pulses. This book contains everything you need to know to measure even the shortest, weakest, or most complex ultrashort laser pulses. Whether you're an undergrad or an advanced researcher, you'll find easy-to-understand descriptions of all the key ideas behind all the FROG techniques, all the practical details of pulse measurement, and many new directions of research. This book is not like any other scientific book. It is a lively discussion of the basic concepts. It is an advanced treatment of research-level issues.

Ultrafast Phenomena XII

Ultrafast Phenomena XII PDF Author: Thomas Elsässer
Publisher: Springer Science & Business Media
ISBN:
Category : Science
Languages : en
Pages : 746

Book Description
I: Coherent Control.- The Odyssey of Kent Wilson: Holding Molecules in the Light.- The Kent Wilson Group in the 1990s.- Algorithms for Closed Loop Ultrafast Control of Quantum Dynamics.- Control of Quantum Dynamics by Adaptive Femtosecond Pulse Shaping.- Optimal Control of Two-Photon Transitions: Bright and Dark Femtosecond Pulses Designed by a Self-Learning Algorithm.- Feedback Optimization of Molecular States Using a Parametrization in Frequency and Time Domain.- Controlling and Probing Impulsively Induced Ground State Vibrational Dynamics.- Dynamics and Coherent Control of Condensed Phase Vibrational Coherences.- Spatiotemporal Coherent Control.- Coherent Control and Nonlinear Interactions of Semiconductor Cavity Polaritons.- Coherent Control of XUV Radiation.- Enhancement of k? Yield from Femtosecond Laser Produced Plasmas by Automated Control of Plasma Parameters.- II: Lasers for Ultrashort Pulses.- Challenges and Limitations on Generating Few Cycle Laser Pulses Directly from Oscillators.- Extremely Flexible and Accurate Chirp-Compensation for 75-MHz Repetitive Glass-Fiber Output of a More-Than 100-THz Bandwidth: Generation of a-Few4Optical-Cycle Transform-Limited Pulses.- 14-fs Pulses at 1.3- m Generated from an All-Solid-State Cr: Forsterite Laser.- Smooth Dispersion Compensation: Novel Chirped Mirrors with Suppressed Dispersion Oscillations.- Dispersion Management over one Octave with Tilted-Front-Interface Chirped Mirrors.- A Prism-Pair-Formed Pulse Shaper Compresses Optical Pulses to the 6 fs Regime.- Correcting the Failure of the Slowly Varying Amplitude Approximation for Short Pulses.- Precise Control of the Pulse-to-Pulse Carrier-Envelope Phase in a Mode-Locked Laser.- Carrier Envelope Offset Phase Stabilization for Few-Cycle Nonlinear Optics.- Sub-10 fs Light Pulses with Stabilized Carrier-Envelope Phase: Optical Waveform Synthesis.- Frequency Domain Control of Femtosecond Pulse Trains with Fabry-Perot Reference Cavities for Optical Frequency Metrology.- Nonlinear Optcal Method for Determining the Absolute Carrier Phase of a Laser Pulse.- Generation of Relativistic Intensity Pulses at 300 Hz Repetition Rate.- Reflection Double Pass Ti: Sapphire Continuous-Wave Amplifier Delivering 5.77 W Average Power, 82 MHz Repetition Rate, 100 fs Pulse.- Chirped Pulse Amplification for Ultraviolet Femtosecond Pulses Using Ce: LiCAF Crystal.- Parabolic Pulses from Yb: Fiber Amplifiers: A New Paradigm for High Power Ultrashort Pulse Generation.- Generation, Amplification and Characterization of Tunable Visible Ultrashort Shaped Pulses.- Synthesis of Supershort UV Pulses Using Phase-Locked Raman Side-Band Generation.- Generation and Measurement of Ultrafast Tunable VUV Light.- III: Pulse Characterization, Shaping and Measurement Techniques.- Autocorrelation Measurement of Femtosecond Optical Pulses Using Two-Photon-Induced Photocurrent in a Photomultiplier Tube.- Precision and Accuracy of Ultrashort Optical Pulse Measurement Using SPIDER.- Highly Simplified Ultrashort Pulse Measurement.- Time-Gated FROG: A New Technique for Studying the Build-Up of Optical Pulse Field in Mode-Locked Ultrafast Lasers.- Measuring the Intensity and Phase of Ultrabroadband Continuum.- Amplitude and Phase Measurement of Mid-IR Femtosecond Pulses Using XFROG.- Rapid Retrieval of Ultrashort Pulse Amplitude and Phase from a Sonogram Trace.- Simultaneous Two-Dimensional Space and Time Measurement of Ultrashort Optical Pulses Based on Spatial Spectral Interferometry.- Reliability of Fourier-Transform Spectral Interferometry.- Direct Measurement of Spectral Phase of Femtosecond Pulses Using Optical Parametric Effect.- Ultrashort Pulse Characterization by Frequency Resolved Pump Probe.- Attosecond Cross Correlation Technique.- Unbalanced Multiphoton Autocorrelation Techniques for fs Pulse Measurements in the Near IR.- Unbalanced Third-Order Correlations for Characterizing the Intensity and Phase of Femtosecond Pulses.- Spectral Phase Correlator for Coded Wavefo

Ultrafast Photonics

Ultrafast Photonics PDF Author: A. Miller
Publisher: CRC Press
ISBN: 9781420033212
Category : Science
Languages : en
Pages : 382

Book Description
Ultrafast photonics has become an interdisciplinary topic of high international research interest because of the spectacular development of compact and efficient lasers producing optical pulses with durations in the femtosecond time domain. Present day long-haul telecommunications systems are almost entirely based on the transmission of short burst

Handbook of Laser Technology and Applications (Three- Volume Set)

Handbook of Laser Technology and Applications (Three- Volume Set) PDF Author: Colin Webb
Publisher: CRC Press
ISBN: 1420050532
Category : Science
Languages : en
Pages : 2779

Book Description
The invention of the laser was one of the towering achievements of the twentieth century. At the opening of the twenty-first century we are witnessing the burgeoning of the myriad technical innovations to which that invention has led. The Handbook of Laser Technology and Applications is a practical and long-lasting reference source for scientists a

Handbook of Laser Technology and Applications

Handbook of Laser Technology and Applications PDF Author: Colin Webb
Publisher: CRC Press
ISBN: 1482240777
Category : Mathematics
Languages : en
Pages : 1266

Book Description
The invention of the laser was one of the towering achievements of the twentieth century. At the opening of the twenty-first century we are witnessing the burgeoning of the myriad technical innovations to which that invention has led. The Handbook of Laser Technology and Applications is a practical and long-lasting reference source for scientists and engineers who work with lasers. The Handbook provides, a comprehensive guide to the current status of lasers and laser systems; it is accessible to science or engineering graduates needing no more than standard undergraduate knowledge of optics. Whilst being a self-contained reference work, the Handbook provides extensive references to contemporary work, and is a basis for studying the professional journal literature on the subject. It covers applications through detailed case studies, and is therefore well suited to readers who wish to use it to solve specific problems of their own. The first of the three volumes comprises an introduction to the basic scientific principles of lasers, laser beams and non-linear optics. The second volume describes the mechanisms and operating characteristics of specific types of laser including crystalline solid - state lasers, semiconductor diode lasers, fibre lasers, gas lasers, chemical lasers, dye lasers and many others as well as detailing the optical and electronic components which tailor the laser's performance and beam delivery systems. The third volume is devoted to case studies of applications in a wide range of subjects including materials processing, optical measurement techniques, medicine, telecommunications, data storage, spectroscopy, earth sciences and astronomy, and plasma fusion research. This vast compendium of knowledge on laser science and technology is the work of over 130 international experts, many of whom are recognised as the world leaders in their respective fields. Whether the reader is engaged in the science, technology, industrial or medical applications of lasers or is researching the subject as a manager or investor in technical enterprises they cannot fail to be informed and enlightened by the wide range of information the Handbook supplies.

Handbook of Laser Technology and Applications: Principles

Handbook of Laser Technology and Applications: Principles PDF Author: Colin E. Webb
Publisher: CRC Press
ISBN: 9780750309608
Category : Technology & Engineering
Languages : en
Pages : 1294

Book Description


Ultrafast Dynamics Driven by Intense Light Pulses

Ultrafast Dynamics Driven by Intense Light Pulses PDF Author: Markus Kitzler
Publisher: Springer
ISBN: 3319201735
Category : Science
Languages : en
Pages : 385

Book Description
This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of completely new dynamics and methods for controlling it. Example topics covered by this book include the study of ultrafast processes in large molecules using attosecond pulses, control of ultrafast electron dynamics in solids with shaped femtosecond laser pulses, light-driven ultrafast plasmonic processes on surfaces and in nanostructures as well as research on atomic and molecular systems under intense X-ray radiation. This book is equally helpful for people who would like to step into this field (e.g. young researchers), for whom it provides a broad introduction, as well as for already experienced researchers who may enjoy the exhaustive discussion that covers the research on essentially all currently studied objects and with all available ultrafast pulse sources.