Time Domain Electromagnetic Scattering Using Finite Elements and Perfectly Matched Layers

Time Domain Electromagnetic Scattering Using Finite Elements and Perfectly Matched Layers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Book Description
We consider a model for the interrogation of a planar Debye medium by a non-harmonic microwave pulse from an antenna source in free space, and we compute the reflected solution using finite elements in the spatial variables and finite differences in the time variable. Perfectly Matched Layers (PMLs) and an absorbing boundary condition are used to damp waves interacting with artificial boundaries imposed to allow finite computational domains. We present simulation results showing that numerical reflections from interfaces at PML boundaries can be controlled.

Two-dimensional Electromagnetic Scattering Using the Finite Element Time Domain (FETD) Technique with Perfectly Matched Layer (PML) Absorbing Boundary Condition

Two-dimensional Electromagnetic Scattering Using the Finite Element Time Domain (FETD) Technique with Perfectly Matched Layer (PML) Absorbing Boundary Condition PDF Author: Kranthi Kiran B. Adapa
Publisher:
ISBN:
Category : Electromagnetic waves
Languages : en
Pages : 178

Book Description


Perfectly Matched Layer (PML) for Computational Electromagnetics

Perfectly Matched Layer (PML) for Computational Electromagnetics PDF Author: Jean-Pierre Bérenger
Publisher: Morgan & Claypool Publishers
ISBN: 1598290835
Category : Technology & Engineering
Languages : en
Pages : 126

Book Description
This lecture presents the perfectly matched layer (PML) absorbing boundary condition (ABC) used to simulate free space when solving the Maxwell equations with such finite methods as the finite difference time domain (FDTD) method or the finite element method. The frequency domain and the time domain equations are derived for the different forms of PML media, namely the split PML, the CPML, the NPML, and the uniaxial PML, in the cases of PMLs matched to isotropic, anisotropic, and dispersive media. The implementation of the PML ABC in the FDTD method is presented in detail. Propagation and reflection of waves in the discretized FDTD space are derived and discussed, with a special emphasis on the problem of evanescent waves. The optimization of the PML ABC is addressed in two typical applications of the FDTD method: first, wave-structure interaction problems, and secondly, waveguide problems. Finally, a review of the literature on the application of the PML ABC to other numerical techniques of electromagnetics and to other partial differential equations of physics is provided. In addition, a software package for computing the actual reflection from a FDTD-PML is provided. It is available here.

Finite Element and Finite Difference Methods in Electromagnetic Scattering

Finite Element and Finite Difference Methods in Electromagnetic Scattering PDF Author: M.A. Morgan
Publisher: Elsevier
ISBN: 1483289532
Category : Technology & Engineering
Languages : en
Pages : 398

Book Description
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled scalar potentials, to the consideration of conforming boundary elements and leap-frog time-marching in transient field problems involving corners and wedges in two and three dimensions, the volume will provide an indispensable reference source for practitioners and students of computational electromagnetics.

The Finite Element Method in Electromagnetics

The Finite Element Method in Electromagnetics PDF Author: Jian-Ming Jin
Publisher: John Wiley & Sons
ISBN: 1118842022
Category : Science
Languages : en
Pages : 728

Book Description
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Advances in Time-Domain Computational Electromagnetic Methods

Advances in Time-Domain Computational Electromagnetic Methods PDF Author: Qiang Ren
Publisher: John Wiley & Sons
ISBN: 1119808375
Category : Science
Languages : en
Pages : 724

Book Description
Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discuses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.

MATLAB-based Finite Element Programming in Electromagnetic Modeling

MATLAB-based Finite Element Programming in Electromagnetic Modeling PDF Author: Özlem Özgün
Publisher: CRC Press
ISBN: 0429854609
Category : Technology & Engineering
Languages : en
Pages : 428

Book Description
This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.

Topics in Computational Wave Propagation

Topics in Computational Wave Propagation PDF Author: Mark Ainsworth
Publisher: Springer Science & Business Media
ISBN: 3642554830
Category : Mathematics
Languages : en
Pages : 408

Book Description
These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.

Numerical Modeling of Two-dimensional Time Domain Electromagnetic Scattering by Underground Inhomogeneities

Numerical Modeling of Two-dimensional Time Domain Electromagnetic Scattering by Underground Inhomogeneities PDF Author: Chung Chi Lin
Publisher:
ISBN:
Category :
Languages : en
Pages : 342

Book Description


Time-domain Computation of Electromagnetic Wave Scattering by the Method of Conforming Boundary Elements

Time-domain Computation of Electromagnetic Wave Scattering by the Method of Conforming Boundary Elements PDF Author: Andreas C. Cangellaris
Publisher:
ISBN:
Category :
Languages : en
Pages : 362

Book Description