Author: Tim Andersen
Publisher:
ISBN:
Category :
Languages : en
Pages : 96
Book Description
This book is for anyone who wants a fresh approach to modern physics. Are you tired of amusing anecdotes about scientists' personal lives and eureka moments? Bored of chronological narratives of scientific progress through the ages? No longer wowed by ideas like string theory? Interested in first principles thinking and what it can do for you? This book is for you. This book is designed to take you step by step through the fundamental principles that underlie the physics of space, time, and matter. It is a how-to guide for building up our universe from first principles. By posing questions and answering them with illustrations and examples, the book shows how we can demonstrate what we know about the universe with simple concepts and thought experiments. With this book, you too can apply first principles to build up your own model of the universe and how it works, one you can take with you, and apply it to other areas of your life such as your job, business, even your relationships. There are no complicated mathematics in this book and I have minimized the amount of jargon. Thus, it is suitable anyone of any educational background from high school on. The book aims to be straightforward about how we get from simple ideas to complex physical theories. So, if you are interested in a new way of looking at the universe and are not afraid to unlearn some of what you have learned, take a look inside.
The Infinite Universe
Author: Tim Andersen
Publisher:
ISBN:
Category :
Languages : en
Pages : 96
Book Description
This book is for anyone who wants a fresh approach to modern physics. Are you tired of amusing anecdotes about scientists' personal lives and eureka moments? Bored of chronological narratives of scientific progress through the ages? No longer wowed by ideas like string theory? Interested in first principles thinking and what it can do for you? This book is for you. This book is designed to take you step by step through the fundamental principles that underlie the physics of space, time, and matter. It is a how-to guide for building up our universe from first principles. By posing questions and answering them with illustrations and examples, the book shows how we can demonstrate what we know about the universe with simple concepts and thought experiments. With this book, you too can apply first principles to build up your own model of the universe and how it works, one you can take with you, and apply it to other areas of your life such as your job, business, even your relationships. There are no complicated mathematics in this book and I have minimized the amount of jargon. Thus, it is suitable anyone of any educational background from high school on. The book aims to be straightforward about how we get from simple ideas to complex physical theories. So, if you are interested in a new way of looking at the universe and are not afraid to unlearn some of what you have learned, take a look inside.
Publisher:
ISBN:
Category :
Languages : en
Pages : 96
Book Description
This book is for anyone who wants a fresh approach to modern physics. Are you tired of amusing anecdotes about scientists' personal lives and eureka moments? Bored of chronological narratives of scientific progress through the ages? No longer wowed by ideas like string theory? Interested in first principles thinking and what it can do for you? This book is for you. This book is designed to take you step by step through the fundamental principles that underlie the physics of space, time, and matter. It is a how-to guide for building up our universe from first principles. By posing questions and answering them with illustrations and examples, the book shows how we can demonstrate what we know about the universe with simple concepts and thought experiments. With this book, you too can apply first principles to build up your own model of the universe and how it works, one you can take with you, and apply it to other areas of your life such as your job, business, even your relationships. There are no complicated mathematics in this book and I have minimized the amount of jargon. Thus, it is suitable anyone of any educational background from high school on. The book aims to be straightforward about how we get from simple ideas to complex physical theories. So, if you are interested in a new way of looking at the universe and are not afraid to unlearn some of what you have learned, take a look inside.
Data Science
Author: Ivo D. Dinov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110697823
Category : Computers
Languages : en
Pages : 489
Book Description
The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this asymmetry requires novel and revolutionary scientific methods and effective human and artificial intelligence interfaces. By lifting the concept of time from a positive real number to a 2D complex time (kime), this book uncovers a connection between artificial intelligence (AI), data science, and quantum mechanics. It proposes a new mathematical foundation for data science based on raising the 4D spacetime to a higher dimension where longitudinal data (e.g., time-series) are represented as manifolds (e.g., kime-surfaces). This new framework enables the development of innovative data science analytical methods for model-based and model-free scientific inference, derived computed phenotyping, and statistical forecasting. The book provides a transdisciplinary bridge and a pragmatic mechanism to translate quantum mechanical principles, such as particles and wavefunctions, into data science concepts, such as datum and inference-functions. It includes many open mathematical problems that still need to be solved, technological challenges that need to be tackled, and computational statistics algorithms that have to be fully developed and validated. Spacekime analytics provide mechanisms to effectively handle, process, and interpret large, heterogeneous, and continuously-tracked digital information from multiple sources. The authors propose computational methods, probability model-based techniques, and analytical strategies to estimate, approximate, or simulate the complex time phases (kime directions). This allows transforming time-varying data, such as time-series observations, into higher-dimensional manifolds representing complex-valued and kime-indexed surfaces (kime-surfaces). The book includes many illustrations of model-based and model-free spacekime analytic techniques applied to economic forecasting, identification of functional brain activation, and high-dimensional cohort phenotyping. Specific case-study examples include unsupervised clustering using the Michigan Consumer Sentiment Index (MCSI), model-based inference using functional magnetic resonance imaging (fMRI) data, and model-free inference using the UK Biobank data archive. The material includes mathematical, inferential, computational, and philosophical topics such as Heisenberg uncertainty principle and alternative approaches to large sample theory, where a few spacetime observations can be amplified by a series of derived, estimated, or simulated kime-phases. The authors extend Newton-Leibniz calculus of integration and differentiation to the spacekime manifold and discuss possible solutions to some of the "problems of time". The coverage also includes 5D spacekime formulations of classical 4D spacetime mathematical equations describing natural laws of physics, as well as, statistical articulation of spacekime analytics in a Bayesian inference framework. The steady increase of the volume and complexity of observed and recorded digital information drives the urgent need to develop novel data analytical strategies. Spacekime analytics represents one new data-analytic approach, which provides a mechanism to understand compound phenomena that are observed as multiplex longitudinal processes and computationally tracked by proxy measures. This book may be of interest to academic scholars, graduate students, postdoctoral fellows, artificial intelligence and machine learning engineers, biostatisticians, econometricians, and data analysts. Some of the material may also resonate with philosophers, futurists, astrophysicists, space industry technicians, biomedical researchers, health practitioners, and the general public.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110697823
Category : Computers
Languages : en
Pages : 489
Book Description
The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this asymmetry requires novel and revolutionary scientific methods and effective human and artificial intelligence interfaces. By lifting the concept of time from a positive real number to a 2D complex time (kime), this book uncovers a connection between artificial intelligence (AI), data science, and quantum mechanics. It proposes a new mathematical foundation for data science based on raising the 4D spacetime to a higher dimension where longitudinal data (e.g., time-series) are represented as manifolds (e.g., kime-surfaces). This new framework enables the development of innovative data science analytical methods for model-based and model-free scientific inference, derived computed phenotyping, and statistical forecasting. The book provides a transdisciplinary bridge and a pragmatic mechanism to translate quantum mechanical principles, such as particles and wavefunctions, into data science concepts, such as datum and inference-functions. It includes many open mathematical problems that still need to be solved, technological challenges that need to be tackled, and computational statistics algorithms that have to be fully developed and validated. Spacekime analytics provide mechanisms to effectively handle, process, and interpret large, heterogeneous, and continuously-tracked digital information from multiple sources. The authors propose computational methods, probability model-based techniques, and analytical strategies to estimate, approximate, or simulate the complex time phases (kime directions). This allows transforming time-varying data, such as time-series observations, into higher-dimensional manifolds representing complex-valued and kime-indexed surfaces (kime-surfaces). The book includes many illustrations of model-based and model-free spacekime analytic techniques applied to economic forecasting, identification of functional brain activation, and high-dimensional cohort phenotyping. Specific case-study examples include unsupervised clustering using the Michigan Consumer Sentiment Index (MCSI), model-based inference using functional magnetic resonance imaging (fMRI) data, and model-free inference using the UK Biobank data archive. The material includes mathematical, inferential, computational, and philosophical topics such as Heisenberg uncertainty principle and alternative approaches to large sample theory, where a few spacetime observations can be amplified by a series of derived, estimated, or simulated kime-phases. The authors extend Newton-Leibniz calculus of integration and differentiation to the spacekime manifold and discuss possible solutions to some of the "problems of time". The coverage also includes 5D spacekime formulations of classical 4D spacetime mathematical equations describing natural laws of physics, as well as, statistical articulation of spacekime analytics in a Bayesian inference framework. The steady increase of the volume and complexity of observed and recorded digital information drives the urgent need to develop novel data analytical strategies. Spacekime analytics represents one new data-analytic approach, which provides a mechanism to understand compound phenomena that are observed as multiplex longitudinal processes and computationally tracked by proxy measures. This book may be of interest to academic scholars, graduate students, postdoctoral fellows, artificial intelligence and machine learning engineers, biostatisticians, econometricians, and data analysts. Some of the material may also resonate with philosophers, futurists, astrophysicists, space industry technicians, biomedical researchers, health practitioners, and the general public.
Cartographies of Time
Author: Daniel Rosenberg
Publisher: Princeton Architectural Press
ISBN: 1616891726
Category : Art
Languages : en
Pages : 273
Book Description
Our critically acclaimed smash hit Cartographies of Time is now available in paperback. In this first comprehensive history of graphic representations of time, authors Daniel Rosenberg and Anthony Grafton have crafted a lively history featuring fanciful characters and unexpected twists and turns. From medieval manuscripts to websites, Cartographies of Time features a wide variety of timelines that in their own unique ways, curving, crossing, branching, defy conventional thinking about the form. A fifty-four-foot-long timeline from 1753 is mounted on a scroll and encased in a protective box. Another timeline uses the different parts of the human body to show the genealogies of Jesus Christ and the rulers of Saxony. Ladders created by missionaries in eighteenth-century Oregon illustrate Bible stories in a vertical format to convert Native Americans. Also included is the April 1912 Marconi North Atlantic Communication chart, which tracked ships, including the Titanic, at points in time rather than by their geographic location, alongside little-known works by famous figures, including a historical chronology by the mapmaker Gerardus Mercator and a chronological board game patented by Mark Twain. Presented in a lavishly illustrated edition, Cartographies of Time is a revelation to anyone interested in the role visual forms have played in our evolving conception of history
Publisher: Princeton Architectural Press
ISBN: 1616891726
Category : Art
Languages : en
Pages : 273
Book Description
Our critically acclaimed smash hit Cartographies of Time is now available in paperback. In this first comprehensive history of graphic representations of time, authors Daniel Rosenberg and Anthony Grafton have crafted a lively history featuring fanciful characters and unexpected twists and turns. From medieval manuscripts to websites, Cartographies of Time features a wide variety of timelines that in their own unique ways, curving, crossing, branching, defy conventional thinking about the form. A fifty-four-foot-long timeline from 1753 is mounted on a scroll and encased in a protective box. Another timeline uses the different parts of the human body to show the genealogies of Jesus Christ and the rulers of Saxony. Ladders created by missionaries in eighteenth-century Oregon illustrate Bible stories in a vertical format to convert Native Americans. Also included is the April 1912 Marconi North Atlantic Communication chart, which tracked ships, including the Titanic, at points in time rather than by their geographic location, alongside little-known works by famous figures, including a historical chronology by the mapmaker Gerardus Mercator and a chronological board game patented by Mark Twain. Presented in a lavishly illustrated edition, Cartographies of Time is a revelation to anyone interested in the role visual forms have played in our evolving conception of history
Hyperspace
Author: Michio Kaku
Publisher: Oxford University Press
ISBN: 0199857768
Category : Science
Languages : en
Pages : 377
Book Description
Are there other dimensions beyond our own? Is time travel possible? Can we change the past? Are there gateways to parallel universes? All of us have pondered such questions, but there was a time when scientists dismissed these notions as outlandish speculations. Not any more. Today, they are the focus of the most intense scientific activity in recent memory. In Hyperspace, Michio Kaku, author of the widely acclaimed Beyond Einstein and a leading theoretical physicist, offers the first book-length tour of the most exciting (and perhaps most bizarre) work in modern physics, work which includes research on the tenth dimension, time warps, black holes, and multiple universes. The theory of hyperspace (or higher dimensional space)--and its newest wrinkle, superstring theory--stand at the center of this revolution, with adherents in every major research laboratory in the world, including several Nobel laureates. Beginning where Hawking's Brief History of Time left off, Kaku paints a vivid portrayal of the breakthroughs now rocking the physics establishment. Why all the excitement? As the author points out, for over half a century, scientists have puzzled over why the basic forces of the cosmos--gravity, electromagnetism, and the strong and weak nuclear forces--require markedly different mathematical descriptions. But if we see these forces as vibrations in a higher dimensional space, their field equations suddenly fit together like pieces in a jigsaw puzzle, perfectly snug, in an elegant, astonishingly simple form. This may thus be our leading candidate for the Theory of Everything. If so, it would be the crowning achievement of 2,000 years of scientific investigation into matter and its forces. Already, the theory has inspired several thousand research papers, and has been the focus of over 200 international conferences. Michio Kaku is one of the leading pioneers in superstring theory and has been at the forefront of this revolution in modern physics. With Hyperspace, he has produced a book for general readers which conveys the vitality of the field and the excitement as scientists grapple with the meaning of space and time. It is an exhilarating look at physics today and an eye-opening glimpse into the ultimate nature of the universe.
Publisher: Oxford University Press
ISBN: 0199857768
Category : Science
Languages : en
Pages : 377
Book Description
Are there other dimensions beyond our own? Is time travel possible? Can we change the past? Are there gateways to parallel universes? All of us have pondered such questions, but there was a time when scientists dismissed these notions as outlandish speculations. Not any more. Today, they are the focus of the most intense scientific activity in recent memory. In Hyperspace, Michio Kaku, author of the widely acclaimed Beyond Einstein and a leading theoretical physicist, offers the first book-length tour of the most exciting (and perhaps most bizarre) work in modern physics, work which includes research on the tenth dimension, time warps, black holes, and multiple universes. The theory of hyperspace (or higher dimensional space)--and its newest wrinkle, superstring theory--stand at the center of this revolution, with adherents in every major research laboratory in the world, including several Nobel laureates. Beginning where Hawking's Brief History of Time left off, Kaku paints a vivid portrayal of the breakthroughs now rocking the physics establishment. Why all the excitement? As the author points out, for over half a century, scientists have puzzled over why the basic forces of the cosmos--gravity, electromagnetism, and the strong and weak nuclear forces--require markedly different mathematical descriptions. But if we see these forces as vibrations in a higher dimensional space, their field equations suddenly fit together like pieces in a jigsaw puzzle, perfectly snug, in an elegant, astonishingly simple form. This may thus be our leading candidate for the Theory of Everything. If so, it would be the crowning achievement of 2,000 years of scientific investigation into matter and its forces. Already, the theory has inspired several thousand research papers, and has been the focus of over 200 international conferences. Michio Kaku is one of the leading pioneers in superstring theory and has been at the forefront of this revolution in modern physics. With Hyperspace, he has produced a book for general readers which conveys the vitality of the field and the excitement as scientists grapple with the meaning of space and time. It is an exhilarating look at physics today and an eye-opening glimpse into the ultimate nature of the universe.
An Experiment with Time
Author: John William Dunne
Publisher:
ISBN:
Category : Time
Languages : en
Pages : 226
Book Description
Publisher:
ISBN:
Category : Time
Languages : en
Pages : 226
Book Description
Geometry of Four Dimensions
Author: Henry Parker Manning
Publisher:
ISBN:
Category : Hyperspace
Languages : en
Pages : 375
Book Description
Publisher:
ISBN:
Category : Hyperspace
Languages : en
Pages : 375
Book Description
Imagining the Tenth Dimension
Author: Rob Bryanton
Publisher: Talking Dog Studios
ISBN: 097803970X
Category : Body, Mind & Spirit
Languages : en
Pages : 224
Book Description
"A fascinating excursion into the multiverse - clear, elegant, personal, provocative." - (Hugo and Nebula award-winning author Greg Bear.) Read the book whose companion website (tenthdimension.com) has already achieved worldwide popularity.
Publisher: Talking Dog Studios
ISBN: 097803970X
Category : Body, Mind & Spirit
Languages : en
Pages : 224
Book Description
"A fascinating excursion into the multiverse - clear, elegant, personal, provocative." - (Hugo and Nebula award-winning author Greg Bear.) Read the book whose companion website (tenthdimension.com) has already achieved worldwide popularity.
Time Travel
Author: James Gleick
Publisher: Vintage
ISBN: 080416892X
Category : History
Languages : en
Pages : 354
Book Description
Best Books of 2016 BOSTON GLOBE * THE ATLANTIC From the acclaimed bestselling author of The Information and Chaos comes this enthralling history of time travel—a concept that has preoccupied physicists and storytellers over the course of the last century. James Gleick delivers a mind-bending exploration of time travel—from its origins in literature and science to its influence on our understanding of time itself. Gleick vividly explores physics, technology, philosophy, and art as each relates to time travel and tells the story of the concept's cultural evolutions—from H.G. Wells to Doctor Who, from Proust to Woody Allen. He takes a close look at the porous boundary between science fiction and modern physics, and, finally, delves into what it all means in our own moment in time—the world of the instantaneous, with its all-consuming present and vanishing future.
Publisher: Vintage
ISBN: 080416892X
Category : History
Languages : en
Pages : 354
Book Description
Best Books of 2016 BOSTON GLOBE * THE ATLANTIC From the acclaimed bestselling author of The Information and Chaos comes this enthralling history of time travel—a concept that has preoccupied physicists and storytellers over the course of the last century. James Gleick delivers a mind-bending exploration of time travel—from its origins in literature and science to its influence on our understanding of time itself. Gleick vividly explores physics, technology, philosophy, and art as each relates to time travel and tells the story of the concept's cultural evolutions—from H.G. Wells to Doctor Who, from Proust to Woody Allen. He takes a close look at the porous boundary between science fiction and modern physics, and, finally, delves into what it all means in our own moment in time—the world of the instantaneous, with its all-consuming present and vanishing future.
Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 384
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 384
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Shadows of Reality
Author: Tony Robbin
Publisher: Yale University Press
ISBN: 0300129629
Category : Art
Languages : en
Pages : 151
Book Description
In this insightful book, which is a revisionist math history as well as a revisionist art history, Tony Robbin, well known for his innovative computer visualizations of hyperspace, investigates different models of the fourth dimension and how these are applied in art and physics. Robbin explores the distinction between the slicing, or Flatland, model and the projection, or shadow, model. He compares the history of these two models and their uses and misuses in popular discussions. Robbin breaks new ground with his original argument that Picasso used the projection model to invent cubism, and that Minkowski had four-dimensional projective geometry in mind when he structured special relativity. The discussion is brought to the present with an exposition of the projection model in the most creative ideas about space in contemporary mathematics such as twisters, quasicrystals, and quantum topology. Robbin clarifies these esoteric concepts with understandable drawings and diagrams. Robbin proposes that the powerful role of projective geometry in the development of current mathematical ideas has been long overlooked and that our attachment to the slicing model is essentially a conceptual block that hinders progress in understanding contemporary models of spacetime. He offers a fascinating review of how projective ideas are the source of some of today’s most exciting developments in art, math, physics, and computer visualization.
Publisher: Yale University Press
ISBN: 0300129629
Category : Art
Languages : en
Pages : 151
Book Description
In this insightful book, which is a revisionist math history as well as a revisionist art history, Tony Robbin, well known for his innovative computer visualizations of hyperspace, investigates different models of the fourth dimension and how these are applied in art and physics. Robbin explores the distinction between the slicing, or Flatland, model and the projection, or shadow, model. He compares the history of these two models and their uses and misuses in popular discussions. Robbin breaks new ground with his original argument that Picasso used the projection model to invent cubism, and that Minkowski had four-dimensional projective geometry in mind when he structured special relativity. The discussion is brought to the present with an exposition of the projection model in the most creative ideas about space in contemporary mathematics such as twisters, quasicrystals, and quantum topology. Robbin clarifies these esoteric concepts with understandable drawings and diagrams. Robbin proposes that the powerful role of projective geometry in the development of current mathematical ideas has been long overlooked and that our attachment to the slicing model is essentially a conceptual block that hinders progress in understanding contemporary models of spacetime. He offers a fascinating review of how projective ideas are the source of some of today’s most exciting developments in art, math, physics, and computer visualization.