Shale Gas and Tight Oil Reservoir Simulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Shale Gas and Tight Oil Reservoir Simulation PDF full book. Access full book title Shale Gas and Tight Oil Reservoir Simulation by Wei Yu. Download full books in PDF and EPUB format.

Shale Gas and Tight Oil Reservoir Simulation

Shale Gas and Tight Oil Reservoir Simulation PDF Author: Wei Yu
Publisher: Gulf Professional Publishing
ISBN: 0128138696
Category : Science
Languages : en
Pages : 432

Book Description
Shale Gas and Tight Oil Reservoir Simulation delivers the latest research and applications used to better manage and interpret simulating production from shale gas and tight oil reservoirs. Starting with basic fundamentals, the book then includes real field data that will not only generate reliable reserve estimation, but also predict the effective range of reservoir and fracture properties through multiple history matching solutions. Also included are new insights into the numerical modelling of CO2 injection for enhanced oil recovery in tight oil reservoirs. This information is critical for a better understanding of the impacts of key reservoir properties and complex fractures. Models the well performance of shale gas and tight oil reservoirs with complex fracture geometries Teaches how to perform sensitivity studies, history matching, production forecasts, and economic optimization for shale-gas and tight-oil reservoirs Helps readers investigate data mining techniques, including the introduction of nonparametric smoothing models

Shale Gas and Tight Oil Reservoir Simulation

Shale Gas and Tight Oil Reservoir Simulation PDF Author: Wei Yu
Publisher: Gulf Professional Publishing
ISBN: 0128138696
Category : Science
Languages : en
Pages : 432

Book Description
Shale Gas and Tight Oil Reservoir Simulation delivers the latest research and applications used to better manage and interpret simulating production from shale gas and tight oil reservoirs. Starting with basic fundamentals, the book then includes real field data that will not only generate reliable reserve estimation, but also predict the effective range of reservoir and fracture properties through multiple history matching solutions. Also included are new insights into the numerical modelling of CO2 injection for enhanced oil recovery in tight oil reservoirs. This information is critical for a better understanding of the impacts of key reservoir properties and complex fractures. Models the well performance of shale gas and tight oil reservoirs with complex fracture geometries Teaches how to perform sensitivity studies, history matching, production forecasts, and economic optimization for shale-gas and tight-oil reservoirs Helps readers investigate data mining techniques, including the introduction of nonparametric smoothing models

Unconventional Tight Reservoir Simulation: Theory, Technology and Practice

Unconventional Tight Reservoir Simulation: Theory, Technology and Practice PDF Author: Qiquan Ran
Publisher: Springer Nature
ISBN: 9813298480
Category : Technology & Engineering
Languages : en
Pages : 411

Book Description
This book systematically introduces readers to the simulation theory and techniques of multiple media for unconventional tight reservoirs. It summarizes the macro/microscopic heterogeneities; the features of multiscale multiple media; the characteristics of complex fluid properties; the occurrence state of continental tight oil and gas reservoirs in China; and the complex flow characteristics and coupled production mechanism under unconventional development patterns. It also discusses the simulation theory of multiple media for unconventional tight oil and gas reservoirs; mathematic model of flow through discontinuous multiple media; geological modeling of discrete multiscale multiple media; and the simulation of multiscale, multiphase flow regimes and multiple media. In addition to the practical application of simulation and software for unconventional tight oil and gas, it also explores the development trends and prospects of simulation technology. The book is of interest to scientific researchers and technicians engaged in the development of oil and gas reservoirs, and serves as a reference resource for advanced graduate students in fields related to petroleum.

Tight Gas Reservoirs

Tight Gas Reservoirs PDF Author: Stephen A. Holditch
Publisher:
ISBN: 9781613998182
Category : Technology & Engineering
Languages : en
Pages : 802

Book Description
The development of tight-gas reservoirs over the last half-century has profoundly affected and expanded the petroleum industry. Moreover, our improved understanding of tight-gas reservoirs--from finding, characterizing, testing, modeling and developing them to producing their resources economically--can be felt not only throughout our industry but also throughout our economy and, indeed, our daily routines. Abundant, reliable, and inexpensive natural gas has truly transformed many aspects of our modern lifestyles. Within the last decade, for example, the world has made great strides in switching from coal-fired to gas-fired electricity generation (with a resulting reduction of US CO2 emissions of 14% since 2005*). Our expanded knowledge of natural-gas development and production has further advanced the goal of achieving energy independence, transforming the US from a gas importer into the third largest liquid natural gas (LNG) exporter in the world. It is truly hard to overstate the efficacy of our understanding and exploitation of tight-gas reservoirs. The four parts contained in this book methodically and comprehensively unfold the technical elements of developing tight-gas reservoirs. They are written - with an industry-wide audience in mind - to help the student understand fundamental concepts - to provide comprehensive reference material for the experienced engineer - for the practitioner in the field looking for case studies and analogues - for those readers curious of mathematical detail and theory, where it will surely lay the foundation for many future academic investigations and doctoral theses This book is comprehensive enough to apply equally to those readers interested in tight-oil reservoirs--common fundamentals, many similar concepts, just larger molecules. This book's organization supports its methodological approach. Part 1 introduces tight-gas resources, including definitions and beginning concepts. Thorough analyses of tight-gas resource types (conventional, shale, and coalbed methane) and their geographical distribution and reserves are given. This part describes shale-gas plays within North America in detail. Part 2 begins where the study of all reservoirs begin, with detailed characterization. Chapters within this part discuss geological considerations over various scales, as well as detailed concepts in well testing and modeling to determine necessary formation properties. Part 3 details all aspects of designing, planning, modeling, and executing hydraulic fracture treatments and provides details on fracture initiation, geometry, and propagation. Part 4 contains 23 case histories of tight gas reservoir development.

Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management

Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management PDF Author: Yijie Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Tight gas reservoirs provide almost one quarter of the current U.S. domestic gas production, with significant projected increases in the next several decades in both the U.S. and abroad. These reservoirs constitute an important play type, with opportunities for improved reservoir simulation & management, such as simulation model design, well placement. Our work develops robust and efficient strategies for improved tight gas reservoir simulation and management. Reservoir simulation models are usually acquired by upscaling the detailed 3D geologic models. Earlier studies of flow simulation have developed layer-based coarse reservoir simulation models, from the more detailed 3D geologic models. However, the layer-based approach cannot capture the essential sand and flow. We introduce and utilize the diffusive time of flight to understand the pressure continuity within the fluvial sands, and develop novel adaptive reservoir simulation grids to preserve the continuity of the reservoir sands. Combined with the high resolution transmissibility based upscaling of flow properties, and well index based upscaling of the well connections, we can build accurate simulation models with at least one order magnitude simulation speed up, but the predicted recoveries are almost indistinguishable from those of the geologic models. General practice of well placement usually requires reservoir simulation to predict the dynamic reservoir response. Numerous well placement scenarios require many reservoir simulation runs, which may have significant CPU demands. We propose a novel simulation-free screening approach to generate a quality map, based on a combination of static and dynamic reservoir properties. The geologic uncertainty is taken into consideration through an uncertainty map form the spatial connectivity analysis and variograms. Combining the quality map and uncertainty map, good infill well locations and drilling sequence can be determined for improved reservoir management. We apply this workflow to design the infill well drilling sequence and explore the impact of subsurface also, for a large-scale tight gas reservoir. Also, we evaluated an improved pressure approximation method, through the comparison with the leading order high frequency term of the asymptotic solution. The proposed pressure solution can better predict the heterogeneous reservoir depletion behavior, thus provide good opportunities for tight gas reservoir management. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151291

Challenges in Modelling and Simulation of Shale Gas Reservoirs

Challenges in Modelling and Simulation of Shale Gas Reservoirs PDF Author: Jebraeel Gholinezhad
Publisher: Springer
ISBN: 3319707698
Category : Technology & Engineering
Languages : en
Pages : 96

Book Description
This book addresses the problems involved in the modelling and simulation of shale gas reservoirs, and details recent advances in the field. It discusses various modelling and simulation challenges, such as the complexity of fracture networks, adsorption phenomena, non-Darcy flow, and natural fracture networks, presenting the latest findings in these areas. It also discusses the difficulties of developing shale gas models, and compares analytical modelling and numerical simulations of shale gas reservoirs with those of conventional reservoirs. Offering a comprehensive review of the state-of-the-art in developing shale gas models and simulators in the upstream oil industry, it allows readers to gain a better understanding of these reservoirs and encourages more systematic research on efficient exploitation of shale gas plays. It is a valuable resource for researchers interested in the modelling of unconventional reservoirs and graduate students studying reservoir engineering. It is also of interest to practising reservoir and production engineers.

Evaluating Factors Controlling Damage and Productivity in Tight Gas Reservoirs

Evaluating Factors Controlling Damage and Productivity in Tight Gas Reservoirs PDF Author: Nick Bahrami
Publisher: Springer Science & Business Media
ISBN: 3319024817
Category : Technology & Engineering
Languages : en
Pages : 66

Book Description
Tight gas reservoirs have very low permeability and porosity, which cannot be produced at economical flow rates unless the well is efficiently stimulated and completed using advanced and optimized technologies. Economical production on the basis of tight gas reservoirs is challenging in general, not only due to their very low permeability but also to several different forms of formation damage that can occur during drilling, completion, stimulation, and production operations. This study demonstrates in detail the effects of different well and reservoir static and dynamic parameters that influence damage mechanisms and well productivity in tight gas reservoirs. Geomechanics, petrophysics, production and reservoir engineering expertise for reservoir characterization is combined with a reservoir simulation approach and core analysis experiments to understand the optimum strategy for tight gas development, delivering improved well productivity and gas recovery.

Tight Gas Reservoir Simulation

Tight Gas Reservoir Simulation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 70

Book Description
The US Department of Energy, Federal Energy Technology Center, has sponsored a project to simulate the behavior of tight, fractured, strata-bound gas reservoirs that arise from irregular discontinuous, or clustered networks of fractures. New FORTRAN codes have been developed to generate fracture networks, or simulate reservoir drainage/recharge, and to plot the fracture networks and reservoirs pressures. Ancillary codes assist with raw data analysis.

Inverse Modeling of Tight Gas Reservoirs

Inverse Modeling of Tight Gas Reservoirs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In terms of a considerable increase the quality of characterization of tight-gas reservoirs, the aim of the present thesis was (i) an accurate representation of specific conditions in a reservoir simulation model, induced after the hydraulic fracturing or as a result of the underbalanced drilling procedure and (ii) performing the history match on a basis of real field data to calibrate the generated model by identifying the main model parameters and to investigate the different physical mechanisms, e.g. multiphase flow phenomena, affecting the well production performance. Due to the complexity of hydrocarbon reservoirs and the simplified nature of the numerical model, the study of the inverse problems in the stochastic framework provides capabilities using diagnostic statistics to quantify a quality of calibration and reliability of parameter estimates. As shown in the present thesis the statistical criteria for model selection may help the modelers to determine an appropriate level of parameterization and one would like to have as good an approximation of structure of the system as the information permits.

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation PDF Author: Kamy Sepehrnoori
Publisher: Elsevier
ISBN: 0128196882
Category : Business & Economics
Languages : en
Pages : 306

Book Description
The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs Offers understanding of the impacts of key reservoir properties and complex fractures on well performance Provides case studies to show how to use the EDFM method for different needs

Principles of Applied Reservoir Simulation

Principles of Applied Reservoir Simulation PDF Author: John R. Fanchi
Publisher: Elsevier
ISBN: 0750679336
Category : Business & Economics
Languages : en
Pages : 530

Book Description
Simulate reservoirs effectively to extract the maximum oil, gas and profit, with this book and free simlation software on companion web site.