Three-dimensional Transient Numerical Study of Hot-jet Ignition of Methane-hydrogen Blends in a Constant-volume Combustor PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Three-dimensional Transient Numerical Study of Hot-jet Ignition of Methane-hydrogen Blends in a Constant-volume Combustor PDF full book. Access full book title Three-dimensional Transient Numerical Study of Hot-jet Ignition of Methane-hydrogen Blends in a Constant-volume Combustor by Md Nazmuzzaman Khan. Download full books in PDF and EPUB format.

Three-dimensional Transient Numerical Study of Hot-jet Ignition of Methane-hydrogen Blends in a Constant-volume Combustor

Three-dimensional Transient Numerical Study of Hot-jet Ignition of Methane-hydrogen Blends in a Constant-volume Combustor PDF Author: Md Nazmuzzaman Khan
Publisher:
ISBN:
Category : Combustion engineering
Languages : en
Pages : 292

Book Description
Ignition by a jet of hot combustion product gas injected into a premixed combustible mixture from a separate pre-chamber is a complex phenomenon with jet penetration, vortex generation, flame and shock propagation and interaction. It has been considered a useful approach for lean, low-NOx combustion for automotive engines, pulsed detonation engines and wave rotor combustors. The hot-jet ignition constant-volume combustor (CVC) rig established at the Combustion and Propulsion Research Laboratory (CPRL) of the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) is considered for numerical study. The CVC chamber contains stoichiometric methane-hydrogen blends, with pre-chamber being operated with slightly rich blends. Five operating and design parameters were investigated with respect to their effects on ignition timing. Di fderent pre-chamber pressure (2, 4 and 6 bar), CVC chamber fuel blends (Fuel-A: 30% methane + 70% hydrogen and Fuel-B: 50% methane + 50% hydrogen by volume), active radicals in pre-chamber combusted products (H, OH, O and NO), CVC chamber temperature (298 K and 514 K) and pre-chamber traverse speed (0.983 m/s, 4.917 m/s and 13.112 m/s) are considered which span a range of fluid-dynamic mixing and chemical time scales. Ignition delay of the fuel-air mixture in the CVC chamber is investigated using a detailed mechanism with 21 species and 84 elementary reactions (DRM19). To speed up the kinetic process adaptive mesh refinement (AMR) based on velocity and temperature and multi-zone reaction technique is used. With 3D numerical simulations, the present work explains the effects of pre-chamber pressure, CVC chamber initial temperature and jet traverse speed on ignition for a speci fic set of fuels. An innovative post processing technique is developed to predict and understand the characteristics of ignition in 3D space and time. With the increase of pre-chamber pressure, ignition delay decreases for Fuel-A which is the relatively more reactive fuel blend. For Fuel-B which is relatively less reactive fuel blend, ignition occurs only for 2 bar pre-chamber pressure for centered stationary jet. Inclusion of active radicals in pre-chamber combusted product decreases the ignition delay when compared with only the stable species in pre-chamber combusted product. The effects of shock-flame interaction on heat release rate is observed by studying flame surface area and vorticity changes. In general, shock-flame interaction increases heat release rate by increasing mixing (increase the amount of deposited vorticity on flame surface) and flame stretching. The heat release rate is found to be maximum just after fast-slow interaction. For Fuel-A, increasing jet traverse speed decreases the ignition delay for relatively higher pre-chamber pressures (6 and 4 bar). Only 6 bar pre-chamber pressure is considered for Fuel-B with three di fferent pre-chamber traverse speeds. Fuel-B fails to ignite within the simulation time for all the traverse speeds. Higher initial CVC temperature (514 K) decreases the ignition delay for both fuels when compared with relatively lower initial CVC temperature (300 K). For initial temperature of 514 K, the ignition of Fuel-B is successful for all the pre-chamber pressures with lowest ignition delay observed for the intermediate 4 bar pre-chamber pressure. Fuel-A has the lowest ignition delay for 6 bar pre-chamber pressure. A specific range of pre-chamber combusted products mass fraction, CVC chamber fuel mass fraction and temperature are found at ignition point for Fuel-A which were liable for ignition initiation. The behavior of less reactive Fuel-B appears to me more complex at room temperature initial condition. No simple conclusions could be made about the range of pre-chamber and CVC chamber mass fractions at ignition point.

Three-dimensional Transient Numerical Study of Hot-jet Ignition of Methane-hydrogen Blends in a Constant-volume Combustor

Three-dimensional Transient Numerical Study of Hot-jet Ignition of Methane-hydrogen Blends in a Constant-volume Combustor PDF Author: Md Nazmuzzaman Khan
Publisher:
ISBN:
Category : Combustion engineering
Languages : en
Pages : 292

Book Description
Ignition by a jet of hot combustion product gas injected into a premixed combustible mixture from a separate pre-chamber is a complex phenomenon with jet penetration, vortex generation, flame and shock propagation and interaction. It has been considered a useful approach for lean, low-NOx combustion for automotive engines, pulsed detonation engines and wave rotor combustors. The hot-jet ignition constant-volume combustor (CVC) rig established at the Combustion and Propulsion Research Laboratory (CPRL) of the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) is considered for numerical study. The CVC chamber contains stoichiometric methane-hydrogen blends, with pre-chamber being operated with slightly rich blends. Five operating and design parameters were investigated with respect to their effects on ignition timing. Di fderent pre-chamber pressure (2, 4 and 6 bar), CVC chamber fuel blends (Fuel-A: 30% methane + 70% hydrogen and Fuel-B: 50% methane + 50% hydrogen by volume), active radicals in pre-chamber combusted products (H, OH, O and NO), CVC chamber temperature (298 K and 514 K) and pre-chamber traverse speed (0.983 m/s, 4.917 m/s and 13.112 m/s) are considered which span a range of fluid-dynamic mixing and chemical time scales. Ignition delay of the fuel-air mixture in the CVC chamber is investigated using a detailed mechanism with 21 species and 84 elementary reactions (DRM19). To speed up the kinetic process adaptive mesh refinement (AMR) based on velocity and temperature and multi-zone reaction technique is used. With 3D numerical simulations, the present work explains the effects of pre-chamber pressure, CVC chamber initial temperature and jet traverse speed on ignition for a speci fic set of fuels. An innovative post processing technique is developed to predict and understand the characteristics of ignition in 3D space and time. With the increase of pre-chamber pressure, ignition delay decreases for Fuel-A which is the relatively more reactive fuel blend. For Fuel-B which is relatively less reactive fuel blend, ignition occurs only for 2 bar pre-chamber pressure for centered stationary jet. Inclusion of active radicals in pre-chamber combusted product decreases the ignition delay when compared with only the stable species in pre-chamber combusted product. The effects of shock-flame interaction on heat release rate is observed by studying flame surface area and vorticity changes. In general, shock-flame interaction increases heat release rate by increasing mixing (increase the amount of deposited vorticity on flame surface) and flame stretching. The heat release rate is found to be maximum just after fast-slow interaction. For Fuel-A, increasing jet traverse speed decreases the ignition delay for relatively higher pre-chamber pressures (6 and 4 bar). Only 6 bar pre-chamber pressure is considered for Fuel-B with three di fferent pre-chamber traverse speeds. Fuel-B fails to ignite within the simulation time for all the traverse speeds. Higher initial CVC temperature (514 K) decreases the ignition delay for both fuels when compared with relatively lower initial CVC temperature (300 K). For initial temperature of 514 K, the ignition of Fuel-B is successful for all the pre-chamber pressures with lowest ignition delay observed for the intermediate 4 bar pre-chamber pressure. Fuel-A has the lowest ignition delay for 6 bar pre-chamber pressure. A specific range of pre-chamber combusted products mass fraction, CVC chamber fuel mass fraction and temperature are found at ignition point for Fuel-A which were liable for ignition initiation. The behavior of less reactive Fuel-B appears to me more complex at room temperature initial condition. No simple conclusions could be made about the range of pre-chamber and CVC chamber mass fractions at ignition point.

Numerical Study of Hot Jet Ignition of Hydrocarbon-air Mixtures in a Constant-volume Combustor

Numerical Study of Hot Jet Ignition of Hydrocarbon-air Mixtures in a Constant-volume Combustor PDF Author: Abdullah Karimi
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 248

Book Description
Ignition of a combustible mixture by a transient jet of hot reactive gas is important for safety of mines, pre-chamber ignition in IC engines, detonation initiation, and in novel constant-volume combustors. The present work is a numerical study of the hot-jet ignition process in a long constant-volume combustor (CVC) that represents a wave-rotor channel. The mixing of hot jet with cold mixture in the main chamber is first studied using non-reacting simulations. The stationary and traversing hot jets of combustion products from a pre-chamber is injected through a converging nozzle into the main CVC chamber containing a premixed fuel-air mixture. Combustion in a two-dimensional analogue of the CVC chamber is modeled using global reaction mechanisms, skeletal mechanisms, and detailed reaction mechanisms for four hydrocarbon fuels: methane, propane, ethylene, and hydrogen. The jet and ignition behavior are compared with high-speed video images from a prior experiment. Hybrid turbulent-kinetic schemes using some skeletal reaction mechanisms and detailed mechanisms are good predictors of the experimental data. Shock-flame interaction is seen to significantly increase the overall reaction rate due to baroclinic vorticity generation, flame area increase, stirring of non-uniform density regions, the resulting mixing, and shock compression. The less easily ignitable methane mixture is found to show higher ignition delay time compared to slower initial reaction and greater dependence on shock interaction than propane and ethylene. The confined jet is observed to behave initially as a wall jet and later as a wall-impinging jet. The jet evolution, vortex structure and mixing behavior are significantly different for traversing jets, stationary centered jets, and near-wall jets. Production of unstable intermediate species like C2H4 and CH3 appears to depend significantly on the initial jet location while relatively stable species like OH are less sensitive. Inclusion of minor radical species in the hot-jet is observed to reduce the ignition delay by 0.2 ms for methane mixture in the main chamber. Reaction pathways analysis shows that ignition delay and combustion progress process are entirely different for hybrid turbulent-kinetic scheme and kinetics-only scheme.

Experimental Investigation of Hot-jet Ignition of Methane-hydrogen Mixtures in a Constant-volume Combustor

Experimental Investigation of Hot-jet Ignition of Methane-hydrogen Mixtures in a Constant-volume Combustor PDF Author: Kyong-Yup Paik
Publisher:
ISBN:
Category :
Languages : en
Pages : 330

Book Description
Investigations of a constant-volume combustor ignited by a penetrating transient jet (a puff) of hot reactive gas have been conducted in order to provide vital data for designing wave rotor combustors. In a wave rotor combustor, a cylindrical drum with an array of channels arranged around the axis spins at a high rpm to generate high-temperature and high-pressure product gas. The hot-gas jet ignition method has been employed to initiate combustion in the channels. This study aims at experimentally investigating the ignition delay time of a premixed combustible mixture in a rectangular, constant-volume chamber, representing one channel of the wave rotor drum. The ignition process may be influenced by the multiple factors: the equivalence ratio, temperature, and the composition of the fuel mixture, the temperature and composition of the jet gas, and the peak mass flow rate of the jet (which depends on diaphragm rupture pressure). In this study, the main mixture is at room temperature. The jet composition and temperature are determined by its source in a pre-chamber with a hydrogen-methane mixture with an equivalent ratio of 1.1, and a fuel mixture ratio of 50:50 (CH4:H2 by volume). The rupture pressure of a diaphragm in the pre-chamber, which is related to the mass flow rate and temperature of the hot jet, can be controlled by varying the number of indentations in the diaphragm. The main chamber composition is varied, with the use of four equivalence ratios (1.0, 0.8, 0.6, and 0.4) and two fuel mixture ratios (50:50, and 30:70 of CH4:H2 by volume). The sudden start of the jet upon rupture of the diaphragm causes a shock wave that precedes the jet and travels along the channel and back after reflection. The shock strength has an important role in fast ignition since the pressure and the temperature are increased after the shock. The reflected shock pressure was examined in order to check the variation of the shock strength. However, it is revealed that the shock strength becomes attenuated compared with the theoretical pressure of the reflected shock. The gap between theoretical and measured pressures increases with the increase of the Mach number of the initial shock. Ignition delay times are obtained using pressure records from two dynamic pressure transducers installed on the main chamber, as well as high-speed videography using flame incandescence and Schileren imaging. The ignition delay time is defined in this research as the time interval from the diaphragm rupture moment to the ignition moment of the air/fuel mixture in the main chamber. Previous researchers used the averaged ignition delay time because the diaphragm rupture moment is elusive considering the structure of the chamber. In this research, the diaphragm rupture moment is estimated based on the initial shock speed and the longitudinal length of the main chamber, and validated with the high-speed video images such that the error between the estimation time and the measured time is within 0.5%. Ignition delay times decrease with an increase in the amount of hydrogen in the fuel mixture, the amount of mass of the hot-jet gases from the pre-chamber, and with a decrease in the equivalence ratio. A Schlieren system has been established to visualize the characteristics of the shock wave, and the flame front. Schlieren photography shows the density gradient of a subject with sharp contrast, including steep density gradients, such as the flame edge and the shock wave. The flame propagation, gas oscillation, and the shock wave speed are measured using the Schlieren system. An image processing code using MATLAB has been developed for measuring the flame front movement from Schlieren images. The trend of the maximum pressure in the main chamber with respect to the equivalence ratio and the fuel mixture ratio describes that the equivalence ratio 0.8 shows the highest maximum pressure, and the fuel ratio 50:50 condition reveals lower maximum pressure in the main chamber than the 30:70 condition. After the combustion occurs, the frequency of the pressure oscillation by the traversing pressure wave increases compared to the frequency before ignition, showing a similar trend with the maximum pressure in the chamber. The frequency is the fastest at the equivalence ratio of 0.8, and the slowest at a ratio of 0.4. The fuel ratio 30:70 cases show slightly faster frequencies than 50:50 cases. Two different combustion behaviors, fast and slow combustion, are observed, and respective characteristics are discussed. The frequency of the flame front oscillation well matches with that of the pressure oscillation, and it seems that the pressure waves drive the flame fronts considering the pressure oscillation frequency is somewhat faster. Lastly, a feedback mechanism between the shock and the flame is suggested to explain the fast combustion in a constant volume chamber with the shock-flame interactions.

Hot Jet Ignition Delay Characterization of Methane and Hydrogen at Elevated Temperatures

Hot Jet Ignition Delay Characterization of Methane and Hydrogen at Elevated Temperatures PDF Author: Ali Tarraf Kojok
Publisher:
ISBN:
Category :
Languages : en
Pages : 270

Book Description
This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50\% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.

Experimental Investigation on Traversing Hot Jet Ignition of Lean Hydrocarbon-air Mixtures in a Constant Volume Combustor

Experimental Investigation on Traversing Hot Jet Ignition of Lean Hydrocarbon-air Mixtures in a Constant Volume Combustor PDF Author: Prasanna Chinnathambi
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 308

Book Description
A constant-volume combustor is used to investigate the ignition initiated by a traversing jet of reactive hot gas, in support of combustion engine applications that include novel wave-rotor constant-volume combustion gas turbines and pre-chamber IC engines. The hot-jet ignition constant-volume combustor rig at the Combustion and Propulsion Research Laboratory at the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) was used for this study. Lean premixed combustible mixture in a rectangular cuboid constant-volume combustor is ignited by a hot-jet traversing at different fixed speeds. The hot jet is issued via a converging nozzle from a cylindrical pre-chamber where partially combusted products of combustion are produced by spark- igniting a rich ethylene-air mixture. The main constant-volume combustor (CVC) chamber uses methane-air, hydrogen-methane-air and ethylene-air mixtures in the lean equivalence ratio range of 0.8 to 0.4. Ignition delay times and ignitability of these combustible mixtures as affected by jet traverse speed, equivalence ratio, and fuel type are investigated in this study.

Numerical Study of Shock-induced Combustion in Methane-air Mixtures

Numerical Study of Shock-induced Combustion in Methane-air Mixtures PDF Author: Shaye Yungster
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Book Description


Experimental and Numerical Study of Dynamics of Premixed Hydrogen-Air Flames Propagating in Ducts

Experimental and Numerical Study of Dynamics of Premixed Hydrogen-Air Flames Propagating in Ducts PDF Author: Huahua Xiao
Publisher: Springer
ISBN: 3662483793
Category : Technology & Engineering
Languages : en
Pages : 162

Book Description
This thesis offers important new insights into and a deeper understanding of premixed flame instabilities and hydrogen safety. Further, it explains the underlying mechanisms that control the combustion processes in tubes. The author’s previous scientific accomplishments, which include a series of high-quality publications in the best journals in our field, Combustion and Flame and International Journal of Heat and Mass Transfer, are very impressive and have already made a significant contribution to combustion science.

Numerical Investigation on Hydrogen/air Non-premixed Combustion in a Three-dimensional Micro Combustor

Numerical Investigation on Hydrogen/air Non-premixed Combustion in a Three-dimensional Micro Combustor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Three-dimensional Computer Modeling of Hydrogen Injection and Combustion

Three-dimensional Computer Modeling of Hydrogen Injection and Combustion PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
The hydrodynamics of hydrogen gas injection into a fixed-volume combustion chamber is analyzed and simulated using KIVA-3, a three-dimensional, reactive flow computer code. Comparisons of the simulation results are made to data obtained at the Combustion Research Facility at Sandia National Laboratory-California (SNL-CA). Simulation of the gas injection problem is found to be of comparable difficulty as the liquid fuel injection in diesel engines. The primary challenge is the large change of length scale from the flow of gas in the orifice to the penetration in the combustion chamber. In the current experiments, the change of length scale is about 4,000. A reduction of the full problem is developed that reduces the change in length scale in the simulation to about 400, with a comparable improvement in computational times. Comparisons of the simulation to the experimental data shows good agreement in the penetration history and pressure rise in the combustion chamber. At late times the comparison is sensitive to the method of determination of the penetration in the simulations. In a comparison of the combustion modeling of methane and hydrogen, hydrogen combustion is more difficult to model, and currently available kinetic models fail to predict the observed autoignition delay at these conditions.

Three-dimensional Numerical Study on the Combustion Flow in an After-burner

Three-dimensional Numerical Study on the Combustion Flow in an After-burner PDF Author: Hong Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description