High Energy Density Capacitors Fabricated by Thin Film Technology PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Energy Density Capacitors Fabricated by Thin Film Technology PDF full book. Access full book title High Energy Density Capacitors Fabricated by Thin Film Technology by . Download full books in PDF and EPUB format.

High Energy Density Capacitors Fabricated by Thin Film Technology

High Energy Density Capacitors Fabricated by Thin Film Technology PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3, make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics.

Thin Films for High Energy Density Capacitors

Thin Films for High Energy Density Capacitors PDF Author: Guneet Sethi
Publisher: LAP Lambert Academic Publishing
ISBN: 9783838399881
Category : Capacitors
Languages : en
Pages : 192

Book Description
Pulsed power applications involve transformation of electrical energy into high-peak power pulses through capacitors. There is an immediate need for fast-response capacitors with decreased volume, weight, and cost for pulsed power applications and power distribution systems. This research challenge is dominated by energy density. Energy density is directly related to dielectric properties such as dielectric polarization, conductivity and breakdown strength of the capacitor dielectric. This work correlates processing and microstructure of single and multiple component dielectric films with their dielectric properties. The inorganic materials studied here include zirconium oxide and tantalum pentoxide reactive sputtered films. Oxide films were combined with different polymers (polyvinyldene flouride-triflouroethylene, polypropylene and polyethylene terephthalate) to produce two different kinds of laminate composites - oxide on polymer and polymer on oxide. Permittivity and conductivity differences in the polymer and oxide films result in an impedance contrast which was modeled through Monte Carlo method in addition to the experimental characterization.

High Energy Density Capacitors Fabricated by Thin Film Technology

High Energy Density Capacitors Fabricated by Thin Film Technology PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3, make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics.

Thin Film Techniques for the Fabrication of Nano-scale High Energy Density Capacitors

Thin Film Techniques for the Fabrication of Nano-scale High Energy Density Capacitors PDF Author: James N. Reck
Publisher:
ISBN:
Category : Capacitors
Languages : en
Pages : 220

Book Description
"Dielectric thin films of either TiO2 or BaTiO3 were sputtered in O2/Ar plasmas on Si wafers to thicknesses ranging from approximately 25 to 200 nm with patterned Ni or Pt electrodes sputtered in Ar plasmas at thicknesses from about 20 to 250 nm to form nano-capacitors. Statistical design of experiments (DOE) was used to determine the effects of the deposition power, plasma composition, and deposition temperature on the measured electrical properties of the nano-capacitors. Additional tests to determine the effects of the dielectric and electrode thickness on the measured dielectric responses of the devices were also undertaken. Characterization was performed with a combination of direct current (DC) and alternating current (AC) testing methods including AC impedance, coercive field and leakage current versus voltage, scanning electron microscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy, focused ion beam microscopy, and atomic force microscopy. The dielectric properties were found to depend on complex interactions of the process variables that could be modeled using statistical software. The permittivity was found to range from 100 to 10,000 with losses between 0.013 and 0.570. The resistance at 1 V DC varied from approximately 1.5 to 360 G[Omega], and either a ferroelectric or paraelectric hysteretic response was observed for all specimens tested. Chemical analyses showed the films to be oxygen rich, while XRD and TEM data indicated the BaTiO3 was amorphous. The electrical, chemical, and microstructural properties were found to depend on the sputtering conditions of the BaTiO3, dielectric thickness, electrode material choice, and the electrode thickness. Collectively, the results indicated that the properties of nanometer thick dielectric and electrode materials have a significant impact on the measured electrical properties"--Abstract, leaf iv.

Investigation of Multi-layer Thin Films for Energy Storage

Investigation of Multi-layer Thin Films for Energy Storage PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 30

Book Description
We investigate here the feasibility of increasing the energy density of thin-film capacitors by construction of a multi-layer capacitor device through ablation and redeposition of the capacitor materials using a high-power pulsed ion beam. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The dielectric capacitor filler material was a composition of Lead-Lanthanum-Zirconium-Titanium oxide (PLZT). The energy storage can be increased by using material of intrinsically high dielectric constant, and constructing many thin layers of this material. For successful device construction, there are a number of challenging requirements including correct stoichiometric and crystallographic composition of the deposited PLZT. This report details some success in satisfying these requirements, even though the attempt at device manufacture was unsuccessful. The conclusion that 900 C temperatures are necessary to reconstitute the deposited PLZT has implications for future manufacturing capability.

Nanostructures in Ferroelectric Films for Energy Applications

Nanostructures in Ferroelectric Films for Energy Applications PDF Author: Jun Ouyang
Publisher: Elsevier
ISBN: 0128138564
Category : Technology & Engineering
Languages : en
Pages : 386

Book Description
Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and the Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their growth are minimized by formation of self-assembled nano-domains. This book is an accessible reference for both instructors in academia and R&D professionals. Provides the necessary components for the systematic study of the structure-property relationship in ferroelectric thin film materials using case studies in energy applications Written by leading experts in the research areas of piezoelectrics, electrocalorics, ferroelectric dielectrics (especially in capacitive energy storage), ferroelectric domains, and ferroelectric-Si technology Includes a well balanced mix of theoretical design and simulation, materials processing and integration, and dedicated characterization methods of the involved nanostructures

Bi-based Perovskite Solid Solutions for High Energy Density Thin Films

Bi-based Perovskite Solid Solutions for High Energy Density Thin Films PDF Author: Morgan Rose Emerson
Publisher:
ISBN:
Category : Dielectric films
Languages : en
Pages : 176

Book Description
Electrical energy storage devices are currently the main limiting factor in many electrical devices and with the increasing demands placed on electrical power over fossil fuels, high energy density materials are essential. Previous research by Huang et al. on bulk (1-x)Bi(Zn1/2Ti1/2)O3-xABO3 solid solution systems led to the discovery of an excellent dielectric material. The optimal compositions, which corresponded to morphotropic phase boundaries, were found to be 0.1Bi(Zn1/2Ti1/2)O3-0.9BaTiO3 and 0.3Bi(Zn1/2Ti1/2)O3-0.7NaNbO3. Measurements, made on bulk ceramics, showed that these materials possess dielectric constants as high as 3000 at 10 KHz for BT-BZT and 1200 for NN-BZT with low loss tangents (tan [delta]0.01) up to high temperatures (T400 °C). Most notably, these high dielectric constants persist to high fields (E

Electroceramics for High Performance Supercapicitors

Electroceramics for High Performance Supercapicitors PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1394167148
Category : Technology & Engineering
Languages : en
Pages : 258

Book Description
ELECTROCERAMICS FOR HIGH PERFORMANCE SUPERCAPACITORS The book describes the state-of-the-art analyses of high-density supercapacitors. In the near future, high-energy density materials will be required to accommodate the increased demand for gadgets, hybrid cars, and massive electrical energy storage systems. Fuel cells, supercapacitors, and batteries have the highest energy densities, but traditional capacitors have gained attention for intermittent energy harvesting owing to their high energy transfer rate and quick charging/discharging capability. The large amount of electric breakdown strength and modest remnant polarization are keys to the high energy density in dielectric capacitors. Above 100??C or 212??F, polymer dielectric capacitors become unstable and begin to suffer a dielectric breakdown. Hence, dielectric ceramics are the sole viable option for high-temperature applications. This book provides a basic understanding of dielectric-based energy harvesting. After a detailed analysis of the state-of-the-art, it proceeds to explain the specific strategies to enhance energy storage features, including managing the local structure and phases assembly, raising the dielectric width, and enhancing microstructure and electrical uniformity. Also discussed is the need for novel materials with applications in high-density supercapacitors. Audience The book is designed for engineers, industrialists, physicists, scientists, and researchers who work on the applications of high-density supercapacitors.

Grain engineering of high energy density BaTiO3 thick films integrated on Si

Grain engineering of high energy density BaTiO3 thick films integrated on Si PDF Author: Jun Ouyang
Publisher: OAE Publishing Inc.
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 10

Book Description
Ferroelectric (FE) ceramics with a large relative dielectric permittivity and a high dielectric strength have the potential to store or supply electricity of very high energy and power densities, which is desirable in many modern electronic and electrical systems. For a given FE material, such as the commonly-used BaTiO3, a close interplay between defect chemistry, misfit strain, and grain characteristics must be carefully manipulated for engineering its film capacitors. In this work, the effects of grain orientation and morphology on the energy storage properties of BaTiO3 thick films were systematically investigated. These films were all deposited on Si at 500 °C in an oxygen-rich atmosphere, and their thicknesses varied between ~500 nm and ~2.6 μm. While a columnar nanograined BaTiO3 film with a (001) texture showed a higher recyclable energy density Wrec (81.0 J/cm3vs. 57.1 J/[email protected] MV/cm, ~40% increase) than that of a randomly-oriented BaTiO3 film of about the same thickness (~500 nm), the latter showed an improved energy density at a reduced electric field with an increasing film thickness. Specifically, for the 1.3 μm and 2.6 μm thick polycrystalline films, their energy storage densities Wrec reached 46.6 J/cm3 and 48.8 J/cm3 at an applied electric field of 2.31 MV/cm (300 V on 1.3 μm film) and 1.77 MV/cm (460 V on 2.6 μm film), respectively. This ramp-up in energy density can be attributed to increased polarizability with a growing grain size in thicker polycrystalline films and is desirable in high pulse power applications.

Dielectric Materials for Capacitive Energy Storage

Dielectric Materials for Capacitive Energy Storage PDF Author: Haibo Zhang
Publisher: CRC Press
ISBN: 1040123988
Category : Science
Languages : en
Pages : 217

Book Description
Due to growing energy demands, the development of high-energy storage density dielectric materials for energy storage capacitors has become a top priority. Dielectric Materials for Capacitive Energy Storage focuses on the research and application of dielectric materials for energy storage capacitors. It provides a detailed summary of dielectric properties and polarization mechanism of dielectric materials and analyzes several international cases based on the latest research progress. • Explains advantages and development potential of dielectric capacitors. • Discusses energy storage principles of dielectric materials as well as effects of polarization and breakdown mechanisms on energy storage performance. • Summarizes achievements and progress of inorganic and organic dielectric materials as well as multidimensional composites. • Details applications and features international case studies. • Offers unique insights into existing issues and forecasts for future research priorities. With its summary and large-scale analysis of the fields related to dielectric energy storage, this book will benefit scholars, researchers, and advanced students in materials, electrical, chemical, and other areas of engineering working on capacitors and energy storage.

Nanostructures in Ferroelectric Films for Energy Applications

Nanostructures in Ferroelectric Films for Energy Applications PDF Author: Jun Ouyang
Publisher: Elsevier
ISBN: 0128138572
Category : Technology & Engineering
Languages : en
Pages : 386

Book Description
Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their growth are minimized by formation of self-assembled nano-domains. This book is an accessible reference for both instructors in academia and R&D professionals. Provides the necessary components for the systematic study of the structure-property relationship in ferroelectric thin film materials using case studies in energy applications Written by leading experts in the research areas of piezoelectrics, electrocalorics, ferroelectric dielectrics (especially in capacitive energy storage), ferroelectric domains, and ferroelectric-Si technology Includes a well balanced mix of theoretical design and simulation, materials processing and integration, and dedicated characterization methods of the involved nanostructures