Chemical Vapor Deposition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Chemical Vapor Deposition PDF full book. Access full book title Chemical Vapor Deposition by S Neralla. Download full books in PDF and EPUB format.

Chemical Vapor Deposition

Chemical Vapor Deposition PDF Author: S Neralla
Publisher: BoD – Books on Demand
ISBN: 9535125729
Category : Science
Languages : en
Pages : 292

Book Description
This book provides an overview of chemical vapor deposition (CVD) methods and recent advances in developing novel materials for application in various fields. CVD has now evolved into the most widely used technique for growth of thin films in electronics industry. Several books on CVD methods have emerged in the past, and thus the scope of this book goes beyond providing fundamentals of the CVD process. Some of the chapters included highlight current limitations in the CVD methods and offer alternatives in developing coatings through overcoming these limitations.

Thin Films by Chemical Vapour Deposition

Thin Films by Chemical Vapour Deposition PDF Author: C.E. Morosanu
Publisher: Elsevier
ISBN: 1483291731
Category : Technology & Engineering
Languages : en
Pages : 720

Book Description
The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films.

Thin Films by Chemical Vapour Deposition

Thin Films by Chemical Vapour Deposition PDF Author: C. E. Moroșanu
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 724

Book Description


Thin Films by Chemical Vapour Deposition

Thin Films by Chemical Vapour Deposition PDF Author: C.E. Morosanu
Publisher: Elsevier Health Sciences
ISBN:
Category : Science
Languages : en
Pages : 730

Book Description
The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films. Present status and future trends in CVD films. References. Index of Acronyms and Abbreviations. Author Index. CVD Film Index. Subject Index. Supplier Index.

Chemical Vapor Deposition

Chemical Vapor Deposition PDF Author: S Neralla
Publisher: BoD – Books on Demand
ISBN: 9535125729
Category : Science
Languages : en
Pages : 292

Book Description
This book provides an overview of chemical vapor deposition (CVD) methods and recent advances in developing novel materials for application in various fields. CVD has now evolved into the most widely used technique for growth of thin films in electronics industry. Several books on CVD methods have emerged in the past, and thus the scope of this book goes beyond providing fundamentals of the CVD process. Some of the chapters included highlight current limitations in the CVD methods and offer alternatives in developing coatings through overcoming these limitations.

Thin Film Chemical Vapor Deposition in Electronics

Thin Film Chemical Vapor Deposition in Electronics PDF Author: Vladislav Yu Vasilyev
Publisher:
ISBN: 9781633211865
Category : Chemical vapor deposition
Languages : en
Pages : 320

Book Description
This monograph is a summary of equipment, methodology and thin film growth experience obtained by the author during his 30 years of research work in the field of Integrated Circuit (IC) device technology. The monograph is concerned with the analysis of different aspects of different types of inorganic thin films grown by Chemical Vapor Deposition (CVD) methods and dedicated to the use in IC technology and production. The author discusses the methodology issues of thin film CVD and the fundamentals of the chemical kinetics of thin film growth. The main core of this monograph is the analysis of thin film CVD kinetics features obtained using different types of reactors, chemical compounds, process conditions. The monograph covers a wide variety of CVD-related aspects: equipment analysis, chemical compound features, CVD process methodology analysis, CVD kinetic features and their quantitative characterization, implementation of obtained numerical equations for thin film step coverage and gap-fill issues, interrelation of the film properties and CVD process features, and CVD process classification. The author would like to highlight that all the data presented in this book has been experimentally obtained by a number of research groups. Most of the data has been double-checked and confirmed. Surely, some data could not be repeated because it was obtained a long time ago using some specific deposition tools and processes. Nevertheless, the author would like to stress that he considers this book as an attempt to create a whole view on the thin film CVD for IC device technology applications. In this regard, the author has tried to generalize a large amount of experimental data, selecting the most common features of the film growth, composition, structure, and properties.

Chemical Vapor Deposition

Chemical Vapor Deposition PDF Author: Srinivasan Sivaram
Publisher: Springer Science & Business Media
ISBN: 1475747519
Category : Technology & Engineering
Languages : en
Pages : 302

Book Description
In early 1987 I was attempting to develop a CVD-based tungsten process for Intel. At every step ofthe development, information that we were collecting had to be analyzed in light of theories and hypotheses from books and papers in many unrelated subjects. Thesesources were so widely different that I came to realize there was no unifying treatment of CVD and its subprocesses. More interestingly, my colleagues in the industry were from many disciplines (a surface chemist, a mechanical engineer, a geologist, and an electrical engineer werein my group). To help us understand the field of CVD and its players, some of us organized the CVD user's group of Northern California in 1988. The idea for writing a book on the subject occurred to me during that time. I had already organized my thoughts for a course I taught at San Jose State University. Later Van Nostrand agreed to publish my book as a text intended for students at the senior/first year graduate level and for process engineers in the microelectronics industry, This book is not intended to be bibliographical, and it does not cover every new material being studied for chemical vapor deposition. On the other hand, it does present the principles of CVD at a fundamental level while uniting them with the needs of the microelectronics industry.

Chemical Vapor Deposition

Chemical Vapor Deposition PDF Author: Jong-Hee Park
Publisher: ASM International
ISBN: 161503224X
Category : Technology & Engineering
Languages : en
Pages : 477

Book Description


Chemical Vapour Deposition (CVD)

Chemical Vapour Deposition (CVD) PDF Author: Kwang-Leong Choy
Publisher: CRC Press
ISBN: 1000691071
Category : Science
Languages : en
Pages : 492

Book Description
This book offers a timely and complete overview on chemical vapour deposition (CVD) and its variants for the processing of nanoparticles, nanowires, nanotubes, nanocomposite coatings, thin and thick films, and composites. Chapters discuss key aspects, from processing, material structure and properties to practical use, cost considerations, versatility, and sustainability. The author presents a comprehensive overview of CVD and its potential in producing high performance, cost-effective nanomaterials and thin and thick films. Features Provides an up-to-date introduction to CVD technology for the fabrication of nanomaterials, nanostructured films, and composite coatings Discusses processing, structure, functionalization, properties, and use in clean energy, engineering, and biomedical grand challenges Covers thin and thick films and composites Compares CVD with other processing techniques in terms of structure/properties, cost, versatility, and sustainability Kwang-Leong Choy is the Director of the UCL Centre for Materials Discovery and Professor of Materials Discovery in the Institute for Materials Discovery at the University College London. She earned her D.Phil. from the University of Oxford, and is the recipient of numerous honors including the Hetherington Prize, Oxford Metallurgical Society Award, and Grunfeld Medal and Prize from the Institute of Materials (UK). She is an elected fellow of the Institute of Materials, Minerals and Mining, and the Royal Society of Chemistry.

Chemical Vapor Deposition for Microelectronics

Chemical Vapor Deposition for Microelectronics PDF Author: Arthur Sherman
Publisher: William Andrew Inc.
ISBN: 9780815511366
Category : Technology & Engineering
Languages : en
Pages : 215

Book Description
Presents an extensive, comprehensive study of chemical vapor deposition (CVD). Understanding CVD requires knowledge of fluid mechanics, plasma physics, chemical thermodynamics and kinetics, as well as homogenous and heterogeneous chemical reactions. This text presents these aspects of CVD in an integrated fashion, and also reviews films for use in integrated circuit technology.

Principles of Chemical Vapor Deposition

Principles of Chemical Vapor Deposition PDF Author: Daniel Dobkin
Publisher: Springer Science & Business Media
ISBN: 9781402012488
Category : Technology & Engineering
Languages : en
Pages : 298

Book Description
Principles of Chemical Vapor Deposition provides a simple introduction to heat and mass transfer, surface and gas phase chemistry, and plasma discharge characteristics. In addition, the book includes discussions of practical films and reactors to help in the development of better processes and equipment. This book will assist workers new to chemical vapor deposition (CVD) to understand CVD reactors and processes and to comprehend and exploit the literature in the field. The book reviews several disparate fields with which many researchers may have only a passing acquaintance, such as heat and mass transfer, discharge physics, and surface chemistry, focusing on key issues relevant to CVD. The book also examines examples of realistic industrial reactors and processes with simplified analysis to demonstrate how to apply the principles to practical situations. The book does not attempt to exhaustively survey the literature or to intimidate the reader with irrelevant mathematical apparatus. This book is as simple as possible while still retaining the essential physics and chemistry. The book is generously illustrated to assist the reader in forming the mental images which are the basis of understanding.