Theta Functions on Riemann Surfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theta Functions on Riemann Surfaces PDF full book. Access full book title Theta Functions on Riemann Surfaces by J. D. Fay. Download full books in PDF and EPUB format.

Theta Functions on Riemann Surfaces

Theta Functions on Riemann Surfaces PDF Author: J. D. Fay
Publisher: Springer
ISBN: 3540378154
Category : Mathematics
Languages : en
Pages : 142

Book Description
These notes present new as well as classical results from the theory of theta functions on Riemann surfaces, a subject of renewed interest in recent years. Topics discussed here include: the relations between theta functions and Abelian differentials, theta functions on degenerate Riemann surfaces, Schottky relations for surfaces of special moduli, and theta functions on finite bordered Riemann surfaces.

Theta Functions on Riemann Surfaces

Theta Functions on Riemann Surfaces PDF Author: J. D. Fay
Publisher: Springer
ISBN: 3540378154
Category : Mathematics
Languages : en
Pages : 142

Book Description
These notes present new as well as classical results from the theory of theta functions on Riemann surfaces, a subject of renewed interest in recent years. Topics discussed here include: the relations between theta functions and Abelian differentials, theta functions on degenerate Riemann surfaces, Schottky relations for surfaces of special moduli, and theta functions on finite bordered Riemann surfaces.

Theta Constants, Riemann Surfaces and the Modular Group

Theta Constants, Riemann Surfaces and the Modular Group PDF Author: Hershel M. Farkas
Publisher: American Mathematical Soc.
ISBN: 0821813927
Category : Mathematics
Languages : en
Pages : 557

Book Description
There are incredibly rich connections between classical analysis and number theory. For instance, analytic number theory contains many examples of asymptotic expressions derived from estimates for analytic functions, such as in the proof of the Prime Number Theorem. In combinatorial number theory, exact formulas for number-theoretic quantities are derived from relations between analytic functions. Elliptic functions, especially theta functions, are an important class of such functions in this context, which had been made clear already in Jacobi's Fundamenta nova. Theta functions are also classically connected with Riemann surfaces and with the modular group $\Gamma = \mathrm{PSL (2,\mathbb{Z )$, which provide another path for insights into number theory. Farkas and Kra, well-known masters of the theory of Riemann surfaces and the analysis of theta functions, uncover here interesting combinatorial identities by means of the function theory on Riemann surfaces related to the principal congruence subgroups $\Gamma(k)$. For instance, the authors use this approach to derive congruences discovered by Ramanujan for the partition function, with the main ingredient being the construction of the same function in more than one way. The authors also obtain a variant on Jacobi's famous result on the number of ways that an integer can be represented as a sum of four squares, replacing the squares by triangular numbers and, in the process, obtaining a cleaner result. The recent trend of applying the ideas and methods of algebraic geometry to the study of theta functions and number theory has resulted in great advances in the area. However, the authors choose to stay with the classical point of view. As a result, their statements and proofs are very concrete. In this book the mathematician familiar with the algebraic geometry approach to theta functions and number theory will find many interesting ideas as well as detailed explanations and derivations of new and old results. Highlights of the book include systematic studies of theta constant identities, uniformizations of surfaces represented by subgroups of the modular group, partition identities, and Fourier coefficients of automorphic functions. Prerequisites are a solid understanding of complex analysis, some familiarity with Riemann surfaces, Fuchsian groups, and elliptic functions, and an interest in number theory. The book contains summaries of some of the required material, particularly for theta functions and theta constants. Readers will find here a careful exposition of a classical point of view of analysis and number theory. Presented are numerous examples plus suggestions for research-level problems. The text is suitable for a graduate course or for independent reading.

Riemann Surfaces and Generalized Theta Functions

Riemann Surfaces and Generalized Theta Functions PDF Author: Robert C. Gunning
Publisher: Springer Science & Business Media
ISBN: 3642663826
Category : Mathematics
Languages : en
Pages : 177

Book Description
The investigation of the relationships between compact Riemann surfaces (al gebraic curves) and their associated complex tori (Jacobi varieties) has long been basic to the study both of Riemann surfaces and of complex tori. A Riemann surface is naturally imbedded as an analytic submanifold in its associated torus; and various spaces of linear equivalence elasses of divisors on the surface (or equivalently spaces of analytic equivalence elasses of complex line bundies over the surface), elassified according to the dimensions of the associated linear series (or the dimensions of the spaces of analytic cross-sections), are naturally realized as analytic subvarieties of the associated torus. One of the most fruitful of the elassical approaches to this investigation has been by way of theta functions. The space of linear equivalence elasses of positive divisors of order g -1 on a compact connected Riemann surface M of genus g is realized by an irreducible (g -1)-dimensional analytic subvariety, an irreducible hypersurface, of the associated g-dimensional complex torus J(M); this hyper 1 surface W- r;;;, J(M) is the image of the natural mapping Mg- -+J(M), and is g 1 1 birationally equivalent to the (g -1)-fold symmetric product Mg- jSg-l of the Riemann surface M.

Riemann Surfaces

Riemann Surfaces PDF Author: H. M. Farkas
Publisher: Springer Science & Business Media
ISBN: 1468499300
Category : Mathematics
Languages : en
Pages : 348

Book Description
The present volume is the culmination often years' work separately and joint ly. The idea of writing this book began with a set of notes for a course given by one of the authors in 1970-1971 at the Hebrew University. The notes were refined serveral times and used as the basic content of courses given sub sequently by each of the authors at the State University of New York at Stony Brook and the Hebrew University. In this book we present the theory of Riemann surfaces and its many dif ferent facets. We begin from the most elementary aspects and try to bring the reader up to the frontier of present-day research. We treat both open and closed surfaces in this book, but our main emphasis is on the compact case. In fact, Chapters III, V, VI, and VII deal exclusively with compact surfaces. Chapters I and II are preparatory, and Chapter IV deals with uniformization. All works on Riemann surfaces go back to the fundamental results of Rie mann, Jacobi, Abel, Weierstrass, etc. Our book is no exception. In addition to our debt to these mathematicians of a previous era, the present work has been influenced by many contemporary mathematicians.

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces PDF Author: Rick Miranda
Publisher: American Mathematical Soc.
ISBN: 0821802682
Category : Mathematics
Languages : en
Pages : 414

Book Description
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Tata Lectures on Theta I

Tata Lectures on Theta I PDF Author: David Mumford
Publisher: Springer Science & Business Media
ISBN: 0817645772
Category : Mathematics
Languages : en
Pages : 248

Book Description
This volume is the first of three in a series surveying the theory of theta functions. Based on lectures given by the author at the Tata Institute of Fundamental Research in Bombay, these volumes constitute a systematic exposition of theta functions, beginning with their historical roots as analytic functions in one variable (Volume I), touching on some of the beautiful ways they can be used to describe moduli spaces (Volume II), and culminating in a methodical comparison of theta functions in analysis, algebraic geometry, and representation theory (Volume III).

Compact Riemann Surfaces

Compact Riemann Surfaces PDF Author: R. Narasimhan
Publisher: Birkhäuser
ISBN: 3034886179
Category : Mathematics
Languages : en
Pages : 127

Book Description


Ernst Equation and Riemann Surfaces

Ernst Equation and Riemann Surfaces PDF Author: Christian Klein
Publisher: Springer Science & Business Media
ISBN: 9783540285892
Category : Science
Languages : en
Pages : 274

Book Description
Exact solutions to Einstein’s equations have been useful for the understanding of general relativity in many respects. They have led to such physical concepts as black holes and event horizons, and helped to visualize interesting features of the theory. This volume studies the solutions to the Ernst equation associated to Riemann surfaces in detail. In addition, the book discusses the physical and mathematical aspects of this class analytically as well as numerically.

Riemann Surfaces, Theta Functions, and Abelian Automorphisms Groups

Riemann Surfaces, Theta Functions, and Abelian Automorphisms Groups PDF Author: R.D.M. Accola
Publisher: Springer
ISBN: 354037602X
Category : Mathematics
Languages : en
Pages : 109

Book Description


A Course in Complex Analysis and Riemann Surfaces

A Course in Complex Analysis and Riemann Surfaces PDF Author: Wilhelm Schlag
Publisher: American Mathematical Society
ISBN: 0821898477
Category : Mathematics
Languages : en
Pages : 402

Book Description
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.