Author: Jean Spièce
Publisher: Springer Nature
ISBN: 3030308138
Category : Science
Languages : en
Pages : 164
Book Description
The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spièce develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world’s first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials.
Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy
Author: Jean Spièce
Publisher: Springer Nature
ISBN: 3030308138
Category : Science
Languages : en
Pages : 164
Book Description
The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spièce develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world’s first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials.
Publisher: Springer Nature
ISBN: 3030308138
Category : Science
Languages : en
Pages : 164
Book Description
The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spièce develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world’s first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials.
Thermal Properties of Nanofluids
Author: Taher Armaghani
Publisher: CRC Press
ISBN: 1040145809
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Thermal Properties of Nanofluids presents emerging prospects for understanding and controlling thermophysical properties at the nanoscale. It covers a comprehensive study of recent progress concerning these properties from the solid state to colloids and, above all, a different look at the effect of temperature on nanofluids’ thermal conducting. Introducing various techniques for measuring solid-state properties, including thermal conductivity, thermal diffusivity, and specific heat capacity, this book presents modeling approaches developed for predicting these properties by molecular dynamic (MD) simulations. It discusses the main factors that affect solid-state properties, such as grain size, grain boundaries, surface interactions, doping, and temperature, and the effects of all these factors. This book will interest industry professionals and academic researchers studying the thermophysical behavior of nanomaterials and heat transfer applications of nanofluids. It will serve graduate engineering students studying advanced fluid mechanics, heat transfer, and nanomaterials.
Publisher: CRC Press
ISBN: 1040145809
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Thermal Properties of Nanofluids presents emerging prospects for understanding and controlling thermophysical properties at the nanoscale. It covers a comprehensive study of recent progress concerning these properties from the solid state to colloids and, above all, a different look at the effect of temperature on nanofluids’ thermal conducting. Introducing various techniques for measuring solid-state properties, including thermal conductivity, thermal diffusivity, and specific heat capacity, this book presents modeling approaches developed for predicting these properties by molecular dynamic (MD) simulations. It discusses the main factors that affect solid-state properties, such as grain size, grain boundaries, surface interactions, doping, and temperature, and the effects of all these factors. This book will interest industry professionals and academic researchers studying the thermophysical behavior of nanomaterials and heat transfer applications of nanofluids. It will serve graduate engineering students studying advanced fluid mechanics, heat transfer, and nanomaterials.
Multidisciplinary Mathematical Modelling
Author: Francesc Font
Publisher: Springer Nature
ISBN: 3030642720
Category : Mathematics
Languages : en
Pages : 89
Book Description
This book presents a selection of the talks resulting from research carried out by different groups at the Centre de Recerca Matemàtica and presented at the International Congress on Industrial and Applied Mathematics, held in Valencia in 2019. The various chapters describe a wide variety of topics: cancer modelling, carbon capture by adsorption, nanoscale diffusion and complex systems to predict earthquakes. These mathematical studies were specifically aided via collaborations with biomedical engineers, physicists and chemists. The book is addressed to researchers in all of these areas as well as in general mathematical modelling.
Publisher: Springer Nature
ISBN: 3030642720
Category : Mathematics
Languages : en
Pages : 89
Book Description
This book presents a selection of the talks resulting from research carried out by different groups at the Centre de Recerca Matemàtica and presented at the International Congress on Industrial and Applied Mathematics, held in Valencia in 2019. The various chapters describe a wide variety of topics: cancer modelling, carbon capture by adsorption, nanoscale diffusion and complex systems to predict earthquakes. These mathematical studies were specifically aided via collaborations with biomedical engineers, physicists and chemists. The book is addressed to researchers in all of these areas as well as in general mathematical modelling.
Functional Materials from Colloidal Self-assembly
Author: George Zhao
Publisher: John Wiley & Sons
ISBN: 3527828737
Category : Technology & Engineering
Languages : en
Pages : 678
Book Description
A comprehensive resource for new and veteran researchers in the field of self-assembling and functional materials In Functional Materials from Colloidal Self-assembly, a pair of distinguished researchers delivers a thorough overview of how the colloidal self-assembly approach can enable the design and fabrication of several functional materials and devices. Among other topics, the book explores the foundations of self-assembly in different systems, nucleation, the growth of nanoparticles, self-assembly of colloidal microspheres for photonic crystals and devices, and the self-assembly of amphiphilic molecules as a template for mesoporous materials. The authors also discuss the self-assembly of biomolecules, superstructures from self-assembly, architectures from self-assembly, and the applications of self-assembled nanostructures. Functional Materials from Colloidal Self-assembly provides a balanced approach to the theoretical background and applications of the subject, offering sound guidance to both experienced and early-career researchers. The book also delivers: A thorough introduction to the fundamentals of colloids, including the theory of nucleation and the growth of colloidal particles Comprehensive explorations of mechanisms and strategies for the self-assembly of colloidal particles, including DNA-mediated colloidal self-assembly Practical discussions of characterization techniques for self-assembled colloidal structures, including electron microscopy techniques and X-ray techniques In-depth examinations of biological and biomedical materials, including tissue engineering, drug loading and release, and biodetection Perfect for materials scientists, inorganic chemists, and catalytic chemists, Functional Materials from Colloidal Self-assembly is also a must-read reference for biochemists and surface chemists seeking a one-stop resource on self-assembling and functional materials.
Publisher: John Wiley & Sons
ISBN: 3527828737
Category : Technology & Engineering
Languages : en
Pages : 678
Book Description
A comprehensive resource for new and veteran researchers in the field of self-assembling and functional materials In Functional Materials from Colloidal Self-assembly, a pair of distinguished researchers delivers a thorough overview of how the colloidal self-assembly approach can enable the design and fabrication of several functional materials and devices. Among other topics, the book explores the foundations of self-assembly in different systems, nucleation, the growth of nanoparticles, self-assembly of colloidal microspheres for photonic crystals and devices, and the self-assembly of amphiphilic molecules as a template for mesoporous materials. The authors also discuss the self-assembly of biomolecules, superstructures from self-assembly, architectures from self-assembly, and the applications of self-assembled nanostructures. Functional Materials from Colloidal Self-assembly provides a balanced approach to the theoretical background and applications of the subject, offering sound guidance to both experienced and early-career researchers. The book also delivers: A thorough introduction to the fundamentals of colloids, including the theory of nucleation and the growth of colloidal particles Comprehensive explorations of mechanisms and strategies for the self-assembly of colloidal particles, including DNA-mediated colloidal self-assembly Practical discussions of characterization techniques for self-assembled colloidal structures, including electron microscopy techniques and X-ray techniques In-depth examinations of biological and biomedical materials, including tissue engineering, drug loading and release, and biodetection Perfect for materials scientists, inorganic chemists, and catalytic chemists, Functional Materials from Colloidal Self-assembly is also a must-read reference for biochemists and surface chemists seeking a one-stop resource on self-assembling and functional materials.
Thermoelectric Micro / Nano Generators, Volume 2
Author: Hiroyuki Akinaga
Publisher: John Wiley & Sons
ISBN: 139425637X
Category : Science
Languages : en
Pages : 292
Book Description
This book explores a key technology regarding the importance of connections via an Internet of Things network and how this helps us to easily communicate with others and gather information. Namely, what would happen if this suddenly became unavailable due to a shortage of power or electricity? Using thermoelectric generators is a viable solution as they use the heat around us to generate the much-needed electricity for our technological needs. This second volume on the challenges and prospects of thermoelectric generators covers the reliability and durability of thermoelectric materials and devices, the effect of microstructures on the understanding of electronic properties of complex materials, thermoelectric nanowires, the impact of chemical doping or magnetism, thermoelectric generation using the anomalous Nernst effect, phonon engineering, the current state and future prospects of thermoelectric technologies, transition metal silicides, and past, present and future applications of thermoelectrics.
Publisher: John Wiley & Sons
ISBN: 139425637X
Category : Science
Languages : en
Pages : 292
Book Description
This book explores a key technology regarding the importance of connections via an Internet of Things network and how this helps us to easily communicate with others and gather information. Namely, what would happen if this suddenly became unavailable due to a shortage of power or electricity? Using thermoelectric generators is a viable solution as they use the heat around us to generate the much-needed electricity for our technological needs. This second volume on the challenges and prospects of thermoelectric generators covers the reliability and durability of thermoelectric materials and devices, the effect of microstructures on the understanding of electronic properties of complex materials, thermoelectric nanowires, the impact of chemical doping or magnetism, thermoelectric generation using the anomalous Nernst effect, phonon engineering, the current state and future prospects of thermoelectric technologies, transition metal silicides, and past, present and future applications of thermoelectrics.
Non-Fourier Heat Conduction
Author: Alexander I. Zhmakin
Publisher: Springer Nature
ISBN: 3031259734
Category : Science
Languages : en
Pages : 419
Book Description
This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.
Publisher: Springer Nature
ISBN: 3031259734
Category : Science
Languages : en
Pages : 419
Book Description
This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.
AIST bulletin of metrology
Fundamentals of Rock Physics
Author: Nikolai Bagdassarov
Publisher: Cambridge University Press
ISBN: 1108390196
Category : Science
Languages : en
Pages : 566
Book Description
Rock physics encompasses practically all aspects of solid and fluid state physics. This book provides a unified presentation of the underlying physical principles of rock physics, covering elements of mineral physics, petrology and rock mechanics. After a short introduction on rocks and minerals, the subsequent chapters cover rock density, porosity, stress and strain relationships, permeability, poroelasticity, acoustics, conductivity, polarizability, magnetism, thermal properties and natural radioactivity. Each chapter includes problem sets and focus boxes with in-depth explanations of the physical and mathematical aspects of underlying processes. The book is also supplemented by online MATLAB exercises to help students apply their knowledge to numerically solve rock physics problems. Covering laboratory and field-based measurement methods, as well as theoretical models, this textbook is ideal for upper-level undergraduate and graduate courses in rock physics. It will also make a useful reference for researchers and professional scientists working in geoscience and petroleum engineering.
Publisher: Cambridge University Press
ISBN: 1108390196
Category : Science
Languages : en
Pages : 566
Book Description
Rock physics encompasses practically all aspects of solid and fluid state physics. This book provides a unified presentation of the underlying physical principles of rock physics, covering elements of mineral physics, petrology and rock mechanics. After a short introduction on rocks and minerals, the subsequent chapters cover rock density, porosity, stress and strain relationships, permeability, poroelasticity, acoustics, conductivity, polarizability, magnetism, thermal properties and natural radioactivity. Each chapter includes problem sets and focus boxes with in-depth explanations of the physical and mathematical aspects of underlying processes. The book is also supplemented by online MATLAB exercises to help students apply their knowledge to numerically solve rock physics problems. Covering laboratory and field-based measurement methods, as well as theoretical models, this textbook is ideal for upper-level undergraduate and graduate courses in rock physics. It will also make a useful reference for researchers and professional scientists working in geoscience and petroleum engineering.
Compendium of Thermophysical Property Measurement Methods
Author: A. Cezairliyan
Publisher: Springer Science & Business Media
ISBN: 1461532868
Category : Science
Languages : en
Pages : 639
Book Description
Building on the extensive coverage of the first volume, Volume 2 focuses on the fundamentals of measurements and computational techniques that will aid researchers in the construction and use of measurement devices.
Publisher: Springer Science & Business Media
ISBN: 1461532868
Category : Science
Languages : en
Pages : 639
Book Description
Building on the extensive coverage of the first volume, Volume 2 focuses on the fundamentals of measurements and computational techniques that will aid researchers in the construction and use of measurement devices.
Measurement Techniques for Thin Films
Author: Bertram Schwartz
Publisher:
ISBN:
Category : Metallic films
Languages : en
Pages : 376
Book Description
Publisher:
ISBN:
Category : Metallic films
Languages : en
Pages : 376
Book Description