Author: Charles F. Bowman
Publisher: CRC Press
ISBN: 100007322X
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Thermal Engineering of Nuclear Power Stations: Balance-of-Plant Systems serves as a ready reference to better analyze common engineering challenges in the areas of turbine cycle analysis, thermodynamics, and heat transfer. The scope of the book is broad and comprehensive, encompassing the mechanical aspects of the entire nuclear station balance of plant from the source of the motive steam to the discharge and/or utilization of waste heat and beyond. Written for engineers in the fields of nuclear plant and thermal engineering, the book examines the daily, practical problems encountered by mechanical design, system, and maintenance engineers. It provides clear examples and solutions drawn from numerous case studies in actual, operating nuclear stations.
Thermal Engineering of Nuclear Power Stations
Author: Charles F. Bowman
Publisher: CRC Press
ISBN: 100007322X
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Thermal Engineering of Nuclear Power Stations: Balance-of-Plant Systems serves as a ready reference to better analyze common engineering challenges in the areas of turbine cycle analysis, thermodynamics, and heat transfer. The scope of the book is broad and comprehensive, encompassing the mechanical aspects of the entire nuclear station balance of plant from the source of the motive steam to the discharge and/or utilization of waste heat and beyond. Written for engineers in the fields of nuclear plant and thermal engineering, the book examines the daily, practical problems encountered by mechanical design, system, and maintenance engineers. It provides clear examples and solutions drawn from numerous case studies in actual, operating nuclear stations.
Publisher: CRC Press
ISBN: 100007322X
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Thermal Engineering of Nuclear Power Stations: Balance-of-Plant Systems serves as a ready reference to better analyze common engineering challenges in the areas of turbine cycle analysis, thermodynamics, and heat transfer. The scope of the book is broad and comprehensive, encompassing the mechanical aspects of the entire nuclear station balance of plant from the source of the motive steam to the discharge and/or utilization of waste heat and beyond. Written for engineers in the fields of nuclear plant and thermal engineering, the book examines the daily, practical problems encountered by mechanical design, system, and maintenance engineers. It provides clear examples and solutions drawn from numerous case studies in actual, operating nuclear stations.
Fundamentals of Thermal and Nuclear Power Generation
Author: Yasuo Koizumi
Publisher: Elsevier
ISBN: 0128207337
Category : Business & Economics
Languages : en
Pages : 320
Book Description
Fundamentals of Thermal and Nuclear Power Generation is the first volume in the JSME Series in Thermal and Nuclear Power Generation. The first part of this volume provides a thorough and complete reference on the history of thermal and nuclear power generation, which has informed and sculpted today's industry. It prepares readers for subsequent publications in the series that address more advanced topics and will particularly benefit early career researchers and those approaching the industry from an alternative discipline. Modern thermal and nuclear power generation systems and technologies are then explored, including clear analysis on the fundamentals of thermodynamics, hydrodynamics, thermal engineering, combustion engineering, and nuclear physics. The impact of these technologies on society is considered throughout, as well as supply issues, accident risk analysis, and important emission and sustainability considerations. This book is an invaluable resource for researchers and professional engineers in nuclear and thermal energy engineering, and postgraduate and undergraduate students in power generation, especially nuclear and thermal. Written by experts from the leaders and pioneers in thermal and nuclear power engineering research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience Includes real examples and case studies from Japan and other key regions such as the United States and Europe to provide a deeper learning opportunity Considers societal impact and sustainability concerns and goals throughout
Publisher: Elsevier
ISBN: 0128207337
Category : Business & Economics
Languages : en
Pages : 320
Book Description
Fundamentals of Thermal and Nuclear Power Generation is the first volume in the JSME Series in Thermal and Nuclear Power Generation. The first part of this volume provides a thorough and complete reference on the history of thermal and nuclear power generation, which has informed and sculpted today's industry. It prepares readers for subsequent publications in the series that address more advanced topics and will particularly benefit early career researchers and those approaching the industry from an alternative discipline. Modern thermal and nuclear power generation systems and technologies are then explored, including clear analysis on the fundamentals of thermodynamics, hydrodynamics, thermal engineering, combustion engineering, and nuclear physics. The impact of these technologies on society is considered throughout, as well as supply issues, accident risk analysis, and important emission and sustainability considerations. This book is an invaluable resource for researchers and professional engineers in nuclear and thermal energy engineering, and postgraduate and undergraduate students in power generation, especially nuclear and thermal. Written by experts from the leaders and pioneers in thermal and nuclear power engineering research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience Includes real examples and case studies from Japan and other key regions such as the United States and Europe to provide a deeper learning opportunity Considers societal impact and sustainability concerns and goals throughout
Thermal-Hydraulic Analysis of Nuclear Reactors
Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319538292
Category : Technology & Engineering
Languages : en
Pages : 845
Book Description
This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.
Publisher: Springer
ISBN: 3319538292
Category : Technology & Engineering
Languages : en
Pages : 845
Book Description
This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.
High Temperature Gas-cooled Reactors
Author: Tetsuaki Takeda
Publisher: Academic Press
ISBN: 012821032X
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
High-Temperature Gas Reactors is the fifth volume in the JSME Series on Thermal and Nuclear Power Generation. Series Editor Yasuo Koizumi and his Volume editors Tetsuaki Takeda and Yoshiyuki Inagaki present the latest research on High-Temperature Gas Reactor (HTGR) development and utilization, beginning with an analysis of the history of HTGRs. A detailed analysis of HTGR design features, including reactor core design, cooling tower design, pressure vessel design, I&C factors and safety design, provides readers with a solid understanding of how to develop efficient and safe HTGR within a nuclear power plant.The authors combine their knowledge to present a guide on the safety of HTGRs throughout the entire reactor system, drawing on their unique experience to pass on lessons learned and best practices to support professionals and researchers in their design and operation of these advanced reactor types. Case studies of critical testing carried out by the authors provide the reader with firsthand information on how to conduct tests safely and effectively and an understanding of which responses are required in unexpected incidents to achieve their research objectives. An analysis of technologies and systems in development and testing stages offer the reader a look to the future of HTGRs and help to direct and inform their further research in heat transfer, fluid-dynamics, fuel options and advanced reactor facility selection.This volume is of interest for nuclear and thermal energy engineers and researchers focusing on HTGRs, HTGR plant designers and operators, regulators, post graduate students of nuclear engineering, national labs, government officials and agencies in power and energy policy and regulations. - Written by the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience - Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits - Considers the societal impact and sustainability concerns and goals throughout the discussion - Includes safety factors and considerations, as well as unique results from performance testing of HTGR systems
Publisher: Academic Press
ISBN: 012821032X
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
High-Temperature Gas Reactors is the fifth volume in the JSME Series on Thermal and Nuclear Power Generation. Series Editor Yasuo Koizumi and his Volume editors Tetsuaki Takeda and Yoshiyuki Inagaki present the latest research on High-Temperature Gas Reactor (HTGR) development and utilization, beginning with an analysis of the history of HTGRs. A detailed analysis of HTGR design features, including reactor core design, cooling tower design, pressure vessel design, I&C factors and safety design, provides readers with a solid understanding of how to develop efficient and safe HTGR within a nuclear power plant.The authors combine their knowledge to present a guide on the safety of HTGRs throughout the entire reactor system, drawing on their unique experience to pass on lessons learned and best practices to support professionals and researchers in their design and operation of these advanced reactor types. Case studies of critical testing carried out by the authors provide the reader with firsthand information on how to conduct tests safely and effectively and an understanding of which responses are required in unexpected incidents to achieve their research objectives. An analysis of technologies and systems in development and testing stages offer the reader a look to the future of HTGRs and help to direct and inform their further research in heat transfer, fluid-dynamics, fuel options and advanced reactor facility selection.This volume is of interest for nuclear and thermal energy engineers and researchers focusing on HTGRs, HTGR plant designers and operators, regulators, post graduate students of nuclear engineering, national labs, government officials and agencies in power and energy policy and regulations. - Written by the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience - Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits - Considers the societal impact and sustainability concerns and goals throughout the discussion - Includes safety factors and considerations, as well as unique results from performance testing of HTGR systems
Thermal Design of Nuclear Reactors
Author: R. H. S. Winterton
Publisher: Elsevier
ISBN: 1483145247
Category : Technology & Engineering
Languages : en
Pages : 206
Book Description
Thermal Design of Nuclear Reactors
Publisher: Elsevier
ISBN: 1483145247
Category : Technology & Engineering
Languages : en
Pages : 206
Book Description
Thermal Design of Nuclear Reactors
Nuclear Power Plant Engineering
Author: James H. Rust
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
An Introduction to Thermal Power Plant Engineering and Operation
Author: P.K Das, A.K Das
Publisher: Notion Press
ISBN: 1643248634
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
This book is intended to meet the requirements of the fresh engineers on the field to endow them with indispensable information, technical know-how to work in the power plant industries and its associated plants. The book provides a thorough understanding and the operating principles to solve the elementary and the difficult problems faced by the modern young engineers while working in the industries. This book is written on the basis of ‘hands-on’ experience, sound and in-depth knowledge gained by the authors during their experiences faced while working in this field. The problem generally occurs in the power plants during operation and maintenance. It has been explained in a lucid language.
Publisher: Notion Press
ISBN: 1643248634
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
This book is intended to meet the requirements of the fresh engineers on the field to endow them with indispensable information, technical know-how to work in the power plant industries and its associated plants. The book provides a thorough understanding and the operating principles to solve the elementary and the difficult problems faced by the modern young engineers while working in the industries. This book is written on the basis of ‘hands-on’ experience, sound and in-depth knowledge gained by the authors during their experiences faced while working in this field. The problem generally occurs in the power plants during operation and maintenance. It has been explained in a lucid language.
Thermal Power Plant Performance Analysis
Author: Gilberto Francisco Martha de Souza
Publisher: Springer Science & Business Media
ISBN: 1447123093
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan. Taking in view that the power plant performance can be evaluated not only based on thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: · selection of critical equipment and components, · definition of maintenance plans, mainly for auxiliary systems, and · execution of decision analysis based on risk concepts. The comprehensive presentation of each analysis allows future application of the methodology making Thermal Power Plant Performance Analysis a key resource for undergraduate and postgraduate students in mechanical and nuclear engineering.
Publisher: Springer Science & Business Media
ISBN: 1447123093
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan. Taking in view that the power plant performance can be evaluated not only based on thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: · selection of critical equipment and components, · definition of maintenance plans, mainly for auxiliary systems, and · execution of decision analysis based on risk concepts. The comprehensive presentation of each analysis allows future application of the methodology making Thermal Power Plant Performance Analysis a key resource for undergraduate and postgraduate students in mechanical and nuclear engineering.
Thermodynamics In Nuclear Power Plant Systems
Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319134191
Category : Technology & Engineering
Languages : en
Pages : 735
Book Description
This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book’s core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.
Publisher: Springer
ISBN: 3319134191
Category : Technology & Engineering
Languages : en
Pages : 735
Book Description
This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book’s core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.
Power Engineering
Author: Viorel Badescu
Publisher: CRC Press
ISBN: 0429843534
Category : Science
Languages : en
Pages : 348
Book Description
Traditionally, power engineering has been a subfield of energy engineering and electrical engineering which deals with the generation, transmission, distribution and utilization of electric power and the electrical devices connected to such systems including generators, motors and transformers. Implicitly this perception is associated with the generation of power in large hydraulic, thermal and nuclear plants and distributed consumption. Faced with the climate change phenomena, humanity has had to now contend with changes in attitudes in respect of environment protection and depletion of classical energy resources. These have had consequences in the power production sector, already faced with negative public opinions on nuclear energy and favorable perception of renewable energy resources and about distributed power generation. The objective of this edited book is to review all these changes and to present solutions for future power generation. Future energy systems must factor in the changes and developments in technology like improvements of natural gas combined cycles and clean coal technologies, carbon dioxide capture and storage, advancements in nuclear reactors and hydropower, renewable energy engineering, power-to-gas conversion and fuel cells, energy crops, new energy vectors biomass-hydrogen, thermal energy storage, new storage systems diffusion, modern substations, high voltage engineering equipment and compatibility, HVDC transmission with FACTS, advanced optimization in a liberalized market environment, active grids and smart grids, power system resilience, power quality and cost of supply, plug-in electric vehicles, smart metering, control and communication technologies, new key actors as prosumers, smart cities. The emerging research will enhance the security of energy systems, safety in operation, protection of environment, improve energy efficiency, reliability and sustainability. The book reviews current literature in the advances, innovative options and solutions in power engineering. It has been written for researchers, engineers, technicians and graduate and doctorate students interested in power engineering.
Publisher: CRC Press
ISBN: 0429843534
Category : Science
Languages : en
Pages : 348
Book Description
Traditionally, power engineering has been a subfield of energy engineering and electrical engineering which deals with the generation, transmission, distribution and utilization of electric power and the electrical devices connected to such systems including generators, motors and transformers. Implicitly this perception is associated with the generation of power in large hydraulic, thermal and nuclear plants and distributed consumption. Faced with the climate change phenomena, humanity has had to now contend with changes in attitudes in respect of environment protection and depletion of classical energy resources. These have had consequences in the power production sector, already faced with negative public opinions on nuclear energy and favorable perception of renewable energy resources and about distributed power generation. The objective of this edited book is to review all these changes and to present solutions for future power generation. Future energy systems must factor in the changes and developments in technology like improvements of natural gas combined cycles and clean coal technologies, carbon dioxide capture and storage, advancements in nuclear reactors and hydropower, renewable energy engineering, power-to-gas conversion and fuel cells, energy crops, new energy vectors biomass-hydrogen, thermal energy storage, new storage systems diffusion, modern substations, high voltage engineering equipment and compatibility, HVDC transmission with FACTS, advanced optimization in a liberalized market environment, active grids and smart grids, power system resilience, power quality and cost of supply, plug-in electric vehicles, smart metering, control and communication technologies, new key actors as prosumers, smart cities. The emerging research will enhance the security of energy systems, safety in operation, protection of environment, improve energy efficiency, reliability and sustainability. The book reviews current literature in the advances, innovative options and solutions in power engineering. It has been written for researchers, engineers, technicians and graduate and doctorate students interested in power engineering.