Author: Ivan Hrivňák
Publisher: Elsevier Publishing Company
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
This book reviews the behaviour of metals and alloys during welding. In the first part the heat flow in arc welding processes is discussed. The weld thermal cycle is explained in terms of heat input, and the geometry of weld and thicknesses to be welded. The real welding cycle is described in terms of thermal and strain cycles. The weld metal is characterized in terms of fusion stage, absorption of gases and stage of metal crystallization and structural transformation. The metallurgical background of cracking is described by a full set of crackability tests along with the evaluation of metals from the point of view of crackability. Post welding heat treatment is reviewed, and includes the relaxation of stresses induced by welding. Guidelines are given for the selection of steels for welded structures. Several chapters examine the weldability of particular steels, including high strength steels, stainless steels, high alloyed steels, cryogenic steels and other metals and alloys. The theories are quantified in the form of calculations or computing programmes. Readers will find sufficent data for software processing.
Theory of Weldability of Metals and Alloys
Author: Ivan Hrivňák
Publisher: Elsevier Publishing Company
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
This book reviews the behaviour of metals and alloys during welding. In the first part the heat flow in arc welding processes is discussed. The weld thermal cycle is explained in terms of heat input, and the geometry of weld and thicknesses to be welded. The real welding cycle is described in terms of thermal and strain cycles. The weld metal is characterized in terms of fusion stage, absorption of gases and stage of metal crystallization and structural transformation. The metallurgical background of cracking is described by a full set of crackability tests along with the evaluation of metals from the point of view of crackability. Post welding heat treatment is reviewed, and includes the relaxation of stresses induced by welding. Guidelines are given for the selection of steels for welded structures. Several chapters examine the weldability of particular steels, including high strength steels, stainless steels, high alloyed steels, cryogenic steels and other metals and alloys. The theories are quantified in the form of calculations or computing programmes. Readers will find sufficent data for software processing.
Publisher: Elsevier Publishing Company
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
This book reviews the behaviour of metals and alloys during welding. In the first part the heat flow in arc welding processes is discussed. The weld thermal cycle is explained in terms of heat input, and the geometry of weld and thicknesses to be welded. The real welding cycle is described in terms of thermal and strain cycles. The weld metal is characterized in terms of fusion stage, absorption of gases and stage of metal crystallization and structural transformation. The metallurgical background of cracking is described by a full set of crackability tests along with the evaluation of metals from the point of view of crackability. Post welding heat treatment is reviewed, and includes the relaxation of stresses induced by welding. Guidelines are given for the selection of steels for welded structures. Several chapters examine the weldability of particular steels, including high strength steels, stainless steels, high alloyed steels, cryogenic steels and other metals and alloys. The theories are quantified in the form of calculations or computing programmes. Readers will find sufficent data for software processing.
Welded Design
Author: J Hicks
Publisher: Elsevier
ISBN: 1855737620
Category : Technology & Engineering
Languages : en
Pages : 156
Book Description
Welded design is often considered as an area in which there's lots of practice but little theory. Welded design tends to be overlooked in engineering courses and many engineering students and engineers find materials and metallurgy complicated subjects. Engineering decisions at the design stage need to take account of the properties of a material – if these decisions are wrong failures and even catastrophes can result. Many engineering catastrophes have their origins in the use of irrelevant or invalid methods of analysis, incomplete information or the lack of understanding of material behaviour.The activity of engineering design calls on the knowledge of a variety of engineering disciplines. With his wide engineering background and accumulated knowledge, John Hicks is able to show how a skilled engineer may use materials in an effective and economic way and make decisions on the need for the positioning of joints, be they permanent or temporary, between similar and dissimilar materials.This book provides practising engineers, teachers and students with the necessary background to welding processes and methods of design employed in welded fabrication. It explains how design practices are derived from experimental and theoretical studies to produce practical and economic fabrication. - Provides specialist information on a topic often omitted from engineering courses - Explains why certain methods are used, and also gives examples of commonly performed calculations and derivation of data.
Publisher: Elsevier
ISBN: 1855737620
Category : Technology & Engineering
Languages : en
Pages : 156
Book Description
Welded design is often considered as an area in which there's lots of practice but little theory. Welded design tends to be overlooked in engineering courses and many engineering students and engineers find materials and metallurgy complicated subjects. Engineering decisions at the design stage need to take account of the properties of a material – if these decisions are wrong failures and even catastrophes can result. Many engineering catastrophes have their origins in the use of irrelevant or invalid methods of analysis, incomplete information or the lack of understanding of material behaviour.The activity of engineering design calls on the knowledge of a variety of engineering disciplines. With his wide engineering background and accumulated knowledge, John Hicks is able to show how a skilled engineer may use materials in an effective and economic way and make decisions on the need for the positioning of joints, be they permanent or temporary, between similar and dissimilar materials.This book provides practising engineers, teachers and students with the necessary background to welding processes and methods of design employed in welded fabrication. It explains how design practices are derived from experimental and theoretical studies to produce practical and economic fabrication. - Provides specialist information on a topic often omitted from engineering courses - Explains why certain methods are used, and also gives examples of commonly performed calculations and derivation of data.
Welding Metallurgy
Author: Sindo Kou
Publisher: John Wiley & Sons
ISBN: 0471460931
Category : Technology & Engineering
Languages : en
Pages : 477
Book Description
Updated to include new technological advancements in welding Uses illustrations and diagrams to explain metallurgical phenomena Features exercises and examples An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Publisher: John Wiley & Sons
ISBN: 0471460931
Category : Technology & Engineering
Languages : en
Pages : 477
Book Description
Updated to include new technological advancements in welding Uses illustrations and diagrams to explain metallurgical phenomena Features exercises and examples An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Welding Metallurgy and Weldability
Author: John C. Lippold
Publisher: John Wiley & Sons
ISBN: 1118230701
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
Describes the weldability aspects of structural materials used in a wide variety of engineering structures, including steels, stainless steels, Ni-base alloys, and Al-base alloys Welding Metallurgy and Weldability describes weld failure mechanisms associated with either fabrication or service, and failure mechanisms related to microstructure of the weldment. Weldability issues are divided into fabrication and service related failures; early chapters address hot cracking, warm (solid-state) cracking, and cold cracking that occur during initial fabrication, or repair. Guidance on failure analysis is also provided, along with examples of SEM fractography that will aid in determining failure mechanisms. Welding Metallurgy and Weldability examines a number of weldability testing techniques that can be used to quantify susceptibility to various forms of weld cracking. Describes the mechanisms of weldability along with methods to improve weldability Includes an introduction to weldability testing and techniques, including strain-to-fracture and Varestraint tests Chapters are illustrated with practical examples based on 30 plus years of experience in the field Illustrating the weldability aspects of structural materials used in a wide variety of engineering structures, Welding Metallurgy and Weldability provides engineers and students with the information needed to understand the basic concepts of welding metallurgy and to interpret the failures in welded components.
Publisher: John Wiley & Sons
ISBN: 1118230701
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
Describes the weldability aspects of structural materials used in a wide variety of engineering structures, including steels, stainless steels, Ni-base alloys, and Al-base alloys Welding Metallurgy and Weldability describes weld failure mechanisms associated with either fabrication or service, and failure mechanisms related to microstructure of the weldment. Weldability issues are divided into fabrication and service related failures; early chapters address hot cracking, warm (solid-state) cracking, and cold cracking that occur during initial fabrication, or repair. Guidance on failure analysis is also provided, along with examples of SEM fractography that will aid in determining failure mechanisms. Welding Metallurgy and Weldability examines a number of weldability testing techniques that can be used to quantify susceptibility to various forms of weld cracking. Describes the mechanisms of weldability along with methods to improve weldability Includes an introduction to weldability testing and techniques, including strain-to-fracture and Varestraint tests Chapters are illustrated with practical examples based on 30 plus years of experience in the field Illustrating the weldability aspects of structural materials used in a wide variety of engineering structures, Welding Metallurgy and Weldability provides engineers and students with the information needed to understand the basic concepts of welding metallurgy and to interpret the failures in welded components.
Theory of Thermomechanical Processes in Welding
Author: Andrzej Sluzalec
Publisher: Springer Science & Business Media
ISBN: 1402029918
Category : Technology & Engineering
Languages : en
Pages : 173
Book Description
The main purpose of this book is to provide a unified and systematic continuum approach to engineers and applied physicists working on models of deformable welding material. The key concept is to consider the welding material as an thennodynamic system. Significant achievements include thermodynamics, plasticity, fluid flow and numerical methods. Having chosen point of view, this work does not intend to reunite all the information on the welding thermomechanics. The attention is focused on the deformation of welding material and its coupling with thermal effects. Welding is the process where the interrelation of temperature and deformation appears throughout the influence of thermal field on material properties and modification of the extent of plastic zones. Thermal effects can be studied with coupled or uncoupled theories of thermomechanical response. A majority of welding problems can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the thennal dilatation and influences the material constants. The heat conduction equation and the relations governing the stress field are considered separately. In welding a material is either in solid or in solid and liquid states. The flow of metal and solidification phenomena make the welding process very complex. The automobile, aircraft, nuclear and ship industries are experiencing a rapidly-growing need for tools to handle welding problems. The effective solutions of complex problems in welding became possible in the last two decades, because of the vigorous development of numerical methods for thermal and mechanical analysis.
Publisher: Springer Science & Business Media
ISBN: 1402029918
Category : Technology & Engineering
Languages : en
Pages : 173
Book Description
The main purpose of this book is to provide a unified and systematic continuum approach to engineers and applied physicists working on models of deformable welding material. The key concept is to consider the welding material as an thennodynamic system. Significant achievements include thermodynamics, plasticity, fluid flow and numerical methods. Having chosen point of view, this work does not intend to reunite all the information on the welding thermomechanics. The attention is focused on the deformation of welding material and its coupling with thermal effects. Welding is the process where the interrelation of temperature and deformation appears throughout the influence of thermal field on material properties and modification of the extent of plastic zones. Thermal effects can be studied with coupled or uncoupled theories of thermomechanical response. A majority of welding problems can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the thennal dilatation and influences the material constants. The heat conduction equation and the relations governing the stress field are considered separately. In welding a material is either in solid or in solid and liquid states. The flow of metal and solidification phenomena make the welding process very complex. The automobile, aircraft, nuclear and ship industries are experiencing a rapidly-growing need for tools to handle welding problems. The effective solutions of complex problems in welding became possible in the last two decades, because of the vigorous development of numerical methods for thermal and mechanical analysis.
Welding: Theory and Practice
Author: D.L. Olson
Publisher: Elsevier
ISBN: 0444596380
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
This volume gives a comprehensive and thorough review on recent advances in the science of welding and provides a treatise for their application in day-to-day welding activities. The essential science of welding is presented for the first time in a style that is comprehensible to the craftsman, engineer and scientist. The application of welding technology requires familiarity with a broad spectrum of engineering and science. The practitioners of this technology need to be familiar with mathematics, physics, chemistry, metallurgy, electrical engineering, and mechanical engineering to mention the basics. These practitioners may only have a scant knowledge in all areas, and this book is intended to provide those practising welding with a broad but subtly in-depth overview of the subject. To accomplish this the book is divided into: weld pool chemistry and microstructure, processes: high energy density; low energy density; and bonding, heat input and associated stress, and computer control. Each of these areas addresses the literature, the fundamental science and engineering, and where the technology stands with respect to the topic. The knowledge level anticipated is not that of a senior engineer or researcher, although they could enjoy the works as much as anyone, but is more designed for those involved in the daily practise of welding. Thus the book will be of interest to craftsmen, students, engineers, researchers, managers, and those interested in the Theory and Practice of welding.
Publisher: Elsevier
ISBN: 0444596380
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
This volume gives a comprehensive and thorough review on recent advances in the science of welding and provides a treatise for their application in day-to-day welding activities. The essential science of welding is presented for the first time in a style that is comprehensible to the craftsman, engineer and scientist. The application of welding technology requires familiarity with a broad spectrum of engineering and science. The practitioners of this technology need to be familiar with mathematics, physics, chemistry, metallurgy, electrical engineering, and mechanical engineering to mention the basics. These practitioners may only have a scant knowledge in all areas, and this book is intended to provide those practising welding with a broad but subtly in-depth overview of the subject. To accomplish this the book is divided into: weld pool chemistry and microstructure, processes: high energy density; low energy density; and bonding, heat input and associated stress, and computer control. Each of these areas addresses the literature, the fundamental science and engineering, and where the technology stands with respect to the topic. The knowledge level anticipated is not that of a senior engineer or researcher, although they could enjoy the works as much as anyone, but is more designed for those involved in the daily practise of welding. Thus the book will be of interest to craftsmen, students, engineers, researchers, managers, and those interested in the Theory and Practice of welding.
Welding Metallurgy and Weldability of Nickel-Base Alloys
Author: John C. Lippold
Publisher: John Wiley & Sons
ISBN: 1118210034
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
The most up-to-date coverage of welding metallurgy aspects and weldability issues associated with Ni-base alloys Welding Metallurgy and Weldability of Nickel-Base Alloys describes the fundamental metallurgical principles that control the microstructure and properties of welded Ni-base alloys. It serves as a practical how-to guide that enables engineers to select the proper alloys, filler metals, heat treatments, and welding conditions to ensure that failures are avoided during fabrication and service. Chapter coverage includes: Alloying additions, phase diagrams, and phase stability Solid-solution strengthened Ni-base alloys Precipitation strengthened Ni-base alloys Oxide dispersion strengthened alloys and nickel aluminides Repair welding of Ni-base alloys Dissimilar welding Weldability testing High-chromium alloys used in nuclear power applications With its excellent balance between the fundamentals and practical problem solving, the book serves as an ideal reference for scientists, engineers, and technicians, as well as a textbook for undergraduate and graduate courses in welding metallurgy.
Publisher: John Wiley & Sons
ISBN: 1118210034
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
The most up-to-date coverage of welding metallurgy aspects and weldability issues associated with Ni-base alloys Welding Metallurgy and Weldability of Nickel-Base Alloys describes the fundamental metallurgical principles that control the microstructure and properties of welded Ni-base alloys. It serves as a practical how-to guide that enables engineers to select the proper alloys, filler metals, heat treatments, and welding conditions to ensure that failures are avoided during fabrication and service. Chapter coverage includes: Alloying additions, phase diagrams, and phase stability Solid-solution strengthened Ni-base alloys Precipitation strengthened Ni-base alloys Oxide dispersion strengthened alloys and nickel aluminides Repair welding of Ni-base alloys Dissimilar welding Weldability testing High-chromium alloys used in nuclear power applications With its excellent balance between the fundamentals and practical problem solving, the book serves as an ideal reference for scientists, engineers, and technicians, as well as a textbook for undergraduate and graduate courses in welding metallurgy.
Hot Cracking Phenomena in Welds
Author: Thomas Böllinghaus
Publisher: Springer Science & Business Media
ISBN: 354027460X
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
Although the avoidance of hot cracking still represents a major topic in modern fabrication welding components, the phenomena have not yet been fully understood. Through the 20 individual contributions from experts all over the world the present state of knowledge about hot cracking during welding is defined, and the subject is approached from four different viewpoints. The first chapter provides an overview of the various hot cracking phenomena. Different mechanisms of solidification cracking proposed in the past decades are summarized and new insight is particularly given into the mechanism of ductility dip cracking. The effects of different alloying elements on the hot cracking resistance of various materials are shown in the second chapter and, as a special metallurgical effect, the initiation of stress corrosion cracking at hot cracks has been highlighted. The third chapter outlines how numerical analyses and other modelling techniques can be utilized to describe hot cracking phenomena and how such results might contribute to the explanation of the mechanisms. Various hot cracking test procedures are presented in the final chapter with a special emphasis on standardization. For the engineering and natural scientists in research and development the book provides both, new insight and a comprehensive overview of hot cracking phenomena in welds. The contributions additionally give numerous individual solutions and helpful advice for international welding engineers to avoid hot cracking in practice. Furthermore, it represents a very helpful tool for upper level metallurgical and mechanical engineering students.
Publisher: Springer Science & Business Media
ISBN: 354027460X
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
Although the avoidance of hot cracking still represents a major topic in modern fabrication welding components, the phenomena have not yet been fully understood. Through the 20 individual contributions from experts all over the world the present state of knowledge about hot cracking during welding is defined, and the subject is approached from four different viewpoints. The first chapter provides an overview of the various hot cracking phenomena. Different mechanisms of solidification cracking proposed in the past decades are summarized and new insight is particularly given into the mechanism of ductility dip cracking. The effects of different alloying elements on the hot cracking resistance of various materials are shown in the second chapter and, as a special metallurgical effect, the initiation of stress corrosion cracking at hot cracks has been highlighted. The third chapter outlines how numerical analyses and other modelling techniques can be utilized to describe hot cracking phenomena and how such results might contribute to the explanation of the mechanisms. Various hot cracking test procedures are presented in the final chapter with a special emphasis on standardization. For the engineering and natural scientists in research and development the book provides both, new insight and a comprehensive overview of hot cracking phenomena in welds. The contributions additionally give numerous individual solutions and helpful advice for international welding engineers to avoid hot cracking in practice. Furthermore, it represents a very helpful tool for upper level metallurgical and mechanical engineering students.
Principles of Welding
Author: Robert W. Messler, Jr.
Publisher: John Wiley & Sons
ISBN: 3527617493
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
An advanced yet accessible treatment of the welding process and its underlying science. Despite the critically important role welding plays in nearly every type of human endeavor, most books on this process either focus on basic technical issues and leave the science out, or vice versa. In Principles of Welding, industry expert and prolific technical speaker Robert W. Messler, Jr. takes an integrated approach--presenting a comprehensive, self-contained treatment of the welding process along with the underlying physics, chemistry, and metallurgy of weld formation. Promising to become the standard text and reference in the field, this book provides an unprecedented broad coverage of the underlying physics and the mechanics of solidification--including peritectic and eutectic reactions--and emphasizes material continuity and bonding as a way to create a joint between materials of the same general class. The author supplements the book with hundreds of tables and illustrations, and correlates the science to welding practices in the real world. Principles of Welding departs from existing books with its clear, unambiguous presentation, which is easily grasped even by undergraduate students, yet given at the advanced level required by experienced engineers.
Publisher: John Wiley & Sons
ISBN: 3527617493
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
An advanced yet accessible treatment of the welding process and its underlying science. Despite the critically important role welding plays in nearly every type of human endeavor, most books on this process either focus on basic technical issues and leave the science out, or vice versa. In Principles of Welding, industry expert and prolific technical speaker Robert W. Messler, Jr. takes an integrated approach--presenting a comprehensive, self-contained treatment of the welding process along with the underlying physics, chemistry, and metallurgy of weld formation. Promising to become the standard text and reference in the field, this book provides an unprecedented broad coverage of the underlying physics and the mechanics of solidification--including peritectic and eutectic reactions--and emphasizes material continuity and bonding as a way to create a joint between materials of the same general class. The author supplements the book with hundreds of tables and illustrations, and correlates the science to welding practices in the real world. Principles of Welding departs from existing books with its clear, unambiguous presentation, which is easily grasped even by undergraduate students, yet given at the advanced level required by experienced engineers.
Metallurgy and Mechanics of Welding
Author: Regis Blondeau
Publisher: John Wiley & Sons
ISBN: 1118623746
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This book offers a comprehensive overview on the subject of welding. Written by a group of expert contributors, the book covers all welding methods, from traditional to high-energy plasmas and lasers. The reference presents joint welding, stainless steel welding, aluminum welding, welding in the nuclear industry, and all aspects of welding quality control.
Publisher: John Wiley & Sons
ISBN: 1118623746
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This book offers a comprehensive overview on the subject of welding. Written by a group of expert contributors, the book covers all welding methods, from traditional to high-energy plasmas and lasers. The reference presents joint welding, stainless steel welding, aluminum welding, welding in the nuclear industry, and all aspects of welding quality control.