Theory of Chemical Reaction Dynamics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theory of Chemical Reaction Dynamics PDF full book. Access full book title Theory of Chemical Reaction Dynamics by Antonio Laganà. Download full books in PDF and EPUB format.

Theory of Chemical Reaction Dynamics

Theory of Chemical Reaction Dynamics PDF Author: Antonio Laganà
Publisher: Springer Science & Business Media
ISBN: 1402021658
Category : Science
Languages : en
Pages : 498

Book Description
Proceedings of the NATO Advanced Research Workshop, held in Balatonföldvár, Hungary, 8-12 June 2003

Theory of Chemical Reaction Dynamics

Theory of Chemical Reaction Dynamics PDF Author: Antonio Laganà
Publisher: Springer Science & Business Media
ISBN: 1402021658
Category : Science
Languages : en
Pages : 498

Book Description
Proceedings of the NATO Advanced Research Workshop, held in Balatonföldvár, Hungary, 8-12 June 2003

Theories of Molecular Reaction Dynamics

Theories of Molecular Reaction Dynamics PDF Author: Niels E. Henriksen
Publisher: Oxford University Press, USA
ISBN: 0199203865
Category : Science
Languages : en
Pages : 391

Book Description
This book deals with a central topic at the interface of chemistry and physics - the understanding of how the transformation of matter takes place at the atomic level. Building on the laws of physics, the book focuses on the theoretical framework for predicting the outcome of chemical reactions. The style is highly systematic with attention to basic concepts and clarity of presentation. Molecular reaction dynamics is about the detailed atomic-level description of chemical reactions. Based on quantum mechanics and statistical mechanics or, as an approximation, classical mechanics, the dynamics of uni- and bi-molecular elementary reactions are described. The book features a detailed presentation of transition-state theory which plays an important role in practice, and a comprehensive discussion of basic theories of reaction dynamics in condensed phases. Examples and end-of-chapter problems are included in order to illustrate the theory and its connection to chemical problems.

Theories of Molecular Reaction Dynamics

Theories of Molecular Reaction Dynamics PDF Author: Niels Engholm Henriksen
Publisher:
ISBN: 0198805012
Category : Science
Languages : en
Pages : 458

Book Description
This book describes how chemical reactions take place at the atomic level and how one can calculate the rate of such reactions. The book features a systematic and comprehensive presentation of the subject with a wide range of examples and end-of-chapter problems.

Theory of Unimolecular and Recombination Reactions

Theory of Unimolecular and Recombination Reactions PDF Author: Robert G. Gilbert
Publisher: Wiley-Blackwell
ISBN: 9780632027491
Category : Science
Languages : en
Pages : 356

Book Description


Unimolecular Reactions

Unimolecular Reactions PDF Author: Wendell Forst
Publisher: Cambridge University Press
ISBN: 9780521529228
Category : Science
Languages : en
Pages : 342

Book Description
This textbook covers the basics necessary for understanding the statistical theory of unimolecular reactions in its original and variational, phase-space and angular momentum-conserved incarnations. Because the emphasis is on "why" rather than "how to", there are many problems and answers to explore further. The book is targeted at graduate and advanced undergraduate students studying chemical dynamics, chemical kinetics and theoretical chemistry.

Molecular Reaction Dynamics

Molecular Reaction Dynamics PDF Author: Raphael D. Levine
Publisher: Cambridge University Press
ISBN: 9781139442879
Category : Technology & Engineering
Languages : en
Pages : 574

Book Description
Molecular reaction dynamics is the study of chemical and physical transformations of matter at the molecular level. The understanding of how chemical reactions occur and how to control them is fundamental to chemists and interdisciplinary areas such as materials and nanoscience, rational drug design, environmental and astrochemistry. This book provides a thorough foundation to this area. The first half is introductory, detailing experimental techniques for initiating and probing reaction dynamics and the essential insights that have been gained. The second part explores key areas including photoselective chemistry, stereochemistry, chemical reactions in real time and chemical reaction dynamics in solutions and interfaces. Typical of the new challenges are molecular machines, enzyme action and molecular control. With problem sets included, this book is suitable for advanced undergraduate and graduate students, as well as being supplementary to chemical kinetics, physical chemistry, biophysics and materials science courses, and as a primer for practising scientists.

Tutorials in Molecular Reaction Dynamics

Tutorials in Molecular Reaction Dynamics PDF Author: Mark Brouard
Publisher: Royal Society of Chemistry
ISBN: 178262614X
Category : Science
Languages : en
Pages : 507

Book Description
The focus of this excellent textbook is the topic of molecular reaction dynamics. The chapters are all written by internationally recognised researchers and, from the outset, the contributors are writing with the young scientist in mind. The easy to use, stand-alone, chapters make it of value to students, teachers, and researchers alike. Subjects covered range from the more traditional topics, such as potential energy surfaces, to more advanced and rapidly developing areas, such as femtochemistry and coherent control. The coverage of reaction dynamics is very broad, so many students studying chemical physics will find elements of this text interesting and useful. Tutorials in Molecular Reaction Dynamics includes extensive references to more advanced texts and research papers, and a series of 'Study Boxes' help readers grapple with the more difficult concepts. Each chapter is thoroughly cross-referenced, helping the reader to link concepts from different branches of the subject. Worked problems are included, and each chapter concludes with a selection of problems designed to test understanding of the subjects covered. Supplementary reading material, and worked solutions to the problems, are contained on a secure website.

Methods in Reaction Dynamics

Methods in Reaction Dynamics PDF Author: W. Jakubetz
Publisher: Springer Science & Business Media
ISBN: 3642565115
Category : Science
Languages : en
Pages : 206

Book Description
Methods in Reaction Dynamics is a collection of lectures given at the 1999 Mariapfarr Workshop in Theoretical Chemistry. Arranged as a series of detailed reviews, it provides an overview of quantum mechanical techniques used to describe and simulate the dynamics and kinetics of elementary chemical reactions. The volume provides in-depth discussions of selected topics in Theoretical Chemistry, such as quantum methods in theoretical and computational reaction dynamics and kinetics; time-dependent, time-independent and mixed quantum-classical techniques. Some of the topics have not been reviewed before in detail.

Unimolecular Kinetics

Unimolecular Kinetics PDF Author:
Publisher: Elsevier
ISBN: 012816218X
Category : Science
Languages : en
Pages : 544

Book Description
Unimolecular Kinetics: Part 2: Collisional Energy Transfer and the Master Equation, Volume 43 in Elsevier's Comprehensive Molecular Kinetics series, addresses collision energy transfer and the effects it has on gas phase reactions, particularly at low gas density. Such systems include combustion, industrial gas phase processes and atmospheric/environmental processes. The book also discusses The Master Equation to give a good overview of the mechanics underpinning unimolecular kinetics. This new volume will be of interest to researchers investigating gas phase processes which involve unimolecular reactions and the related intermolecular reactions. - Discusses collision energy transfer and the effects it has on gas phase reactions - Introduces stochastic techniques to energy transfer methods, allowing for an extension of the unimolecular theory beyond simple molecular dissociation - Draws an important connection between detailed reaction dynamic studies and the rate of coefficient determination

Theoretical Modelling and Mechanistic Study of the Formation and Atmospheric Transformations of Polycyclic Aromatic Compounds and Carbonaceous Particles

Theoretical Modelling and Mechanistic Study of the Formation and Atmospheric Transformations of Polycyclic Aromatic Compounds and Carbonaceous Particles PDF Author: Antonius Indarto
Publisher: Universal-Publishers
ISBN: 1599423340
Category :
Languages : en
Pages :

Book Description
Polycyclic Aromatic Hydrocarbons (PAHs) and soot share the same origin (incomplete combustion or pyrolysis) and nature, namely structural and electronic features. The purpose of the research work discussed in this thesis is to offer a theoretical contribution to elucidate some aspects of PAH and soot particle formation. The interest in carrying out such a work lies on one hand in the ubiquitous presence of both species in the environment, on the other hand on the concern for their impact on both human health, specifically involving the respiratory system, and climate, in particular as regards global warming. Thus, a better knowledge on the formation mechanisms of PAHs and soot could then help the efforts to reduce their concentration in our atmosphere. Since the formation mechanisms still presents unclear aspects, the suggestions and indications which can be offered by a theoretical study come out to be complementary to the large amount of experimental data collected so far. In setting up models aimed to mimic what happens in real pyrolysis or combustion situations, we have exploited the fact that PAHs and soot share as a common trait the presence of condensed unsaturated cycles (whose aromatic character can be variable). Thus, though types of soot of different origin will exhibit, on a larger scale, a variety of structural traits, we have chosen an assortment of PAH-like models to study different processes, together with other smaller unsaturated closed and open shell species that are known to play a role in the synthesis course. A preliminary phase of the study was aimed to assess which computational level could be both dependable and affordable to investigate the growth of a PAH-like radical when it is adsorbed onto soot platelets (particle phase). Then the Bittner-Howard variant of the widely accepted Hydrogen Abstraction Acetylene Addition (HACA) growth mechanism has been explored by Density Functional Theory (DFT) at the level mentioned above, both in the gas and particle phases, and over a wide range of temperatures. A parallel mechanism, differing from HACA, based on polyynes and characterized by the proliferation of radical centers, has also been studied for a variety of models at a multiconfigurational theory level. To the end, we have explored several reaction pathways starting from the addition of the propargyl radical to butadiyne.