Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium PDF full book. Access full book title Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium by Abhay Shastry. Download full books in PDF and EPUB format.

Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium

Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium PDF Author: Abhay Shastry
Publisher: Springer Nature
ISBN: 3030335747
Category : Science
Languages : en
Pages : 152

Book Description
This thesis presents several related advances in the field of nonequilibrium quantum thermodynamics. The central result is an ingenious proof that the local temperature and voltage measurement in a nonequilibrium system of fermions exists and is unique, placing the concept of local temperature on a rigorous mathematical footing for the first time. As an intermediate step, a proof of the positivity of the Onsager matrix of linear response theory is given -- a statement of the second law of thermodynamics that had lacked an independent proof for 85 years. A new experimental method to measure the local temperature of an electron system using purely electrical techniques is also proposed, which could enable improvements to the spatial resolution of thermometry by several orders of magnitude. Finally, a new mathematically-exact definition for the local entropy of a quantum system in a nonequilibrium steady state is derived. Several different measures of the local entropy are discussed, relating to the thermodynamics of processes that a local observer with varying degrees of information about the microstates of the system could carry out, and it is shown that they satisfy a hierarchy of inequalities. Proofs of the third law of thermodynamics for generic open quantum systems are presented, taking into account the entropic contribution due to localized states. Appropriately normalized (per-state) local entropies are defined and are used to quantify the departure from local equilibrium.

Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium

Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium PDF Author: Abhay Shastry
Publisher: Springer Nature
ISBN: 3030335747
Category : Science
Languages : en
Pages : 152

Book Description
This thesis presents several related advances in the field of nonequilibrium quantum thermodynamics. The central result is an ingenious proof that the local temperature and voltage measurement in a nonequilibrium system of fermions exists and is unique, placing the concept of local temperature on a rigorous mathematical footing for the first time. As an intermediate step, a proof of the positivity of the Onsager matrix of linear response theory is given -- a statement of the second law of thermodynamics that had lacked an independent proof for 85 years. A new experimental method to measure the local temperature of an electron system using purely electrical techniques is also proposed, which could enable improvements to the spatial resolution of thermometry by several orders of magnitude. Finally, a new mathematically-exact definition for the local entropy of a quantum system in a nonequilibrium steady state is derived. Several different measures of the local entropy are discussed, relating to the thermodynamics of processes that a local observer with varying degrees of information about the microstates of the system could carry out, and it is shown that they satisfy a hierarchy of inequalities. Proofs of the third law of thermodynamics for generic open quantum systems are presented, taking into account the entropic contribution due to localized states. Appropriately normalized (per-state) local entropies are defined and are used to quantify the departure from local equilibrium.

Quantum Thermodynamics

Quantum Thermodynamics PDF Author: Jochen Gemmer
Publisher: Springer Science & Business Media
ISBN: 3540705090
Category : Science
Languages : en
Pages : 338

Book Description
Over the years enormous effort was invested in proving ergodicity, but for a number of reasons, con?dence in the fruitfulness of this approach has waned. — Y. Ben-Menahem and I. Pitowsky [1] Abstract The basic motivation behind the present text is threefold: To give a new explanation for the emergence of thermodynamics, to investigate the interplay between quantum mechanics and thermodynamics, and to explore possible ext- sions of the common validity range of thermodynamics. Originally, thermodynamics has been a purely phenomenological science. Early s- entists (Galileo, Santorio, Celsius, Fahrenheit) tried to give de?nitions for quantities which were intuitively obvious to the observer, like pressure or temperature, and studied their interconnections. The idea that these phenomena might be linked to other ?elds of physics, like classical mechanics, e.g., was not common in those days. Such a connection was basically introduced when Joule calculated the heat equ- alent in 1840 showing that heat was a form of energy, just like kinetic or potential energy in the theory of mechanics. At the end of the 19th century, when the atomic theory became popular, researchers began to think of a gas as a huge amount of bouncing balls inside a box.

Quantum Steampunk

Quantum Steampunk PDF Author: Nicole Yunger Halpern
Publisher: JHU Press
ISBN: 1421443732
Category : Science
Languages : en
Pages : 305

Book Description
The Industrial Revolution meets the quantum-technology revolution! A steampunk adventure guide to how mind-blowing quantum physics is transforming our understanding of information and energy. Victorian era steam engines and particle physics may seem worlds (as well as centuries) apart, yet a new branch of science, quantum thermodynamics, reenvisions the scientific underpinnings of the Industrial Revolution through the lens of today's roaring quantum information revolution. Classical thermodynamics, understood as the study of engines, energy, and efficiency, needs reimagining to take advantage of quantum mechanics, the basic framework that explores the nature of reality by peering at minute matters, down to the momentum of a single particle. In her exciting new book, intrepid Harvard-trained physicist Dr. Nicole Yunger Halpern introduces these concepts to the uninitiated with what she calls "quantum steampunk," after the fantastical genre that pairs futuristic technologies with Victorian sensibilities. While readers follow the adventures of a rag-tag steampunk crew on trains, dirigibles, and automobiles, they explore questions such as, "Can quantum physics revolutionize engines?" and "What deeper secrets can quantum information reveal about the trajectory of time?" Yunger Halpern also describes her own adventures in the quantum universe and provides an insider's look at the work of the scientists obsessed with its technological promise. Moving from fundamental physics to cutting-edge experimental applications, Quantum Steampunk explores the field's aesthetic, shares its whimsy, and gazes into the potential of a quantum future. The result is a blast for fans of science, science fiction, and fantasy.

Nonequilibrium Thermodynamics

Nonequilibrium Thermodynamics PDF Author: Yasar Demirel
Publisher: Newnes
ISBN: 0444595813
Category : Technology & Engineering
Languages : en
Pages : 787

Book Description
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]

Quantum Dissipative Systems

Quantum Dissipative Systems PDF Author: Ulrich Weiss
Publisher: World Scientific
ISBN: 9814374911
Category : Mathematics
Languages : en
Pages : 587

Book Description
Starting from first principles, this book introduces the fundamental concepts and methods of dissipative quantum mechanics and explores related phenomena in condensed matter systems. Major experimental achievements in cooperation with theoretical advances have brightened the field and brought it to the attention of the general community in natural sciences. Nowadays, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book -- originally published in 1990 and republished in 1999 and and 2008 as enlarged second and third editions -- delves significantly deeper than ever before into the fundamental concepts, methods and applications of quantum dissipative systems.This fourth edition provides a self-contained and updated account of the quantum mechanics of open systems and offers important new material including the most recent developments. The subject matter has been expanded by about fifteen percent. Many chapters have been completely rewritten to better cater to both the needs of newcomers to the field and the requests of the advanced readership. Two chapters have been added that account for recent progress in the field. This book should be accessible to all graduate students in physics. Researchers will find this a rich and stimulating source.

Quantum Dynamical Systems

Quantum Dynamical Systems PDF Author: Robert Alicki
Publisher: Oxford University Press on Demand
ISBN: 9780198504009
Category : Mathematics
Languages : en
Pages : 278

Book Description
The present book provides a unified and general framework for studying quantum and classical dynamical systems, both finite and infinite, conservative and dissipative. Special attention is paid to the use of statistical and geometrical techniques, such as multitime correlation functions,quantum dynamical entropy, and non-commutative Lyapunov exponents, for systems with a complex evolution. The material is presented in a concise but self-contained and mathematically friendly way. The main ideas are introduced and illustrated by numerous examples which are directly connected to therelevant physics. Suggestions for further reading are included at the end of each chapter. The book addresses graduate students both in physics and mathematics with interests in mathematical aspects of quantum physics and applications of ergodic theory, operator algebras and statistics to physics,but without any prior knowledge of these subjects.

Thermodynamics and Synchronization in Open Quantum Systems

Thermodynamics and Synchronization in Open Quantum Systems PDF Author: Gonzalo Manzano Paule
Publisher: Springer
ISBN: 3319939645
Category : Science
Languages : en
Pages : 424

Book Description
This book explores some of the connections between dissipative and quantum effects from a theoretical point of view. It focuses on three main topics: the relation between synchronization and quantum correlations, the thermodynamical properties of fluctuations, and the performance of quantum thermal machines. Dissipation effects have a profound impact on the behavior and properties of quantum systems, and the unavoidable interaction with the surrounding environment, with which systems continuously exchange information, energy, angular momentum and matter, is ultimately responsible for decoherence phenomena and the emergence of classical behavior. However, there is a wide intermediate regime in which the interplay between dissipative and quantum effects gives rise to a plethora of rich and striking phenomena that has just started to be understood. In addition, the recent breakthrough techniques in controlling and manipulating quantum systems in the laboratory have made this phenomenology accessible in experiments and potentially applicable.

Quantum Theory of Collective Phenomena

Quantum Theory of Collective Phenomena PDF Author: G. L. Sewell
Publisher: Courier Corporation
ISBN: 0486793656
Category : Science
Languages : en
Pages : 260

Book Description
Systematic three-part treatment covers generalized quantum mechanical framework, statistical thermodynamics, and collective phenomena. "Excellent." — Physics Today. "One of the best introductions to the subject." — Physics Bulletin. 1989 edition.

Mathematical Modeling of Shock-Wave Processes in Condensed Matter

Mathematical Modeling of Shock-Wave Processes in Condensed Matter PDF Author: Tatiana Aleksandrovna Khantuleva
Publisher: Springer Nature
ISBN: 981192404X
Category : Science
Languages : en
Pages : 347

Book Description
This book offers an interdisciplinary theoretical approach based on non-equilibrium statistical thermodynamics and control theory for mathematically modeling shock-induced out-of-equilibrium processes in condensed matter. The book comprises two parts. The first half of the book establishes the theoretical approach, reviewing fundamentals of non-equilibrium statistical thermodynamics and control theory of adaptive systems. The latter half applies the presented approach to a problem on shock-induced plane wave propagation in condensed matter. The result successfully reproduces the observed feature of waveform propagation in experiments, which conventional continuous mechanics cannot access. Further, the consequent stress–strain relationships derived with relaxation and inertia effect in elastic–plastic transition determines material properties in transient regimes.

Thermal Energy

Thermal Energy PDF Author: Yatish T. Shah
Publisher: CRC Press
ISBN: 1315305933
Category : Technology & Engineering
Languages : en
Pages : 1112

Book Description
The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.