Author: B. Jeżowska-Trzebiatowska
Publisher: Elsevier
ISBN: 1483280950
Category : Science
Languages : en
Pages : 721
Book Description
Theory and Structure of Complex Compounds presents the development of the chemistry of complex compounds. This book discusses the various applications of complex compounds in the laboratories and industry, particularly for preparation of reactor materials, for identification of chemical elements, and extraction of rare elements. Organized into 88 chapters, this book begins with an overview of the essential role that oxygen plays in chemical compounds, particularly in complex compounds. This text then examines the redox potentials for the manganese hematoporphyrin in a water solution. Other chapters consider the results of applying the treatment to the hexacarbonyls of chromium, tungsten, and molybdenum. This book discusses as well the optical rotatory dispersion of asymmetric organic and inorganic compounds. The final chapter deals with the general equation allowing determination of the equilibrium constants of the complex formation reaction from spectro-photometric measurements. This book is a valuable resource for chemists, physicists, scientists, and mathematicians.
Theory and Structure of Complex Compounds
Author: B. Jeżowska-Trzebiatowska
Publisher: Elsevier
ISBN: 1483280950
Category : Science
Languages : en
Pages : 721
Book Description
Theory and Structure of Complex Compounds presents the development of the chemistry of complex compounds. This book discusses the various applications of complex compounds in the laboratories and industry, particularly for preparation of reactor materials, for identification of chemical elements, and extraction of rare elements. Organized into 88 chapters, this book begins with an overview of the essential role that oxygen plays in chemical compounds, particularly in complex compounds. This text then examines the redox potentials for the manganese hematoporphyrin in a water solution. Other chapters consider the results of applying the treatment to the hexacarbonyls of chromium, tungsten, and molybdenum. This book discusses as well the optical rotatory dispersion of asymmetric organic and inorganic compounds. The final chapter deals with the general equation allowing determination of the equilibrium constants of the complex formation reaction from spectro-photometric measurements. This book is a valuable resource for chemists, physicists, scientists, and mathematicians.
Publisher: Elsevier
ISBN: 1483280950
Category : Science
Languages : en
Pages : 721
Book Description
Theory and Structure of Complex Compounds presents the development of the chemistry of complex compounds. This book discusses the various applications of complex compounds in the laboratories and industry, particularly for preparation of reactor materials, for identification of chemical elements, and extraction of rare elements. Organized into 88 chapters, this book begins with an overview of the essential role that oxygen plays in chemical compounds, particularly in complex compounds. This text then examines the redox potentials for the manganese hematoporphyrin in a water solution. Other chapters consider the results of applying the treatment to the hexacarbonyls of chromium, tungsten, and molybdenum. This book discusses as well the optical rotatory dispersion of asymmetric organic and inorganic compounds. The final chapter deals with the general equation allowing determination of the equilibrium constants of the complex formation reaction from spectro-photometric measurements. This book is a valuable resource for chemists, physicists, scientists, and mathematicians.
Chemistry
Author: Bruce Averill
Publisher:
ISBN: 9780321413703
Category : Chemistry
Languages : en
Pages : 1233
Book Description
Emphasises on contemporary applications and an intuitive problem-solving approach that helps students discover the exciting potential of chemical science. This book incorporates fresh applications from the three major areas of modern research: materials, environmental chemistry, and biological science.
Publisher:
ISBN: 9780321413703
Category : Chemistry
Languages : en
Pages : 1233
Book Description
Emphasises on contemporary applications and an intuitive problem-solving approach that helps students discover the exciting potential of chemical science. This book incorporates fresh applications from the three major areas of modern research: materials, environmental chemistry, and biological science.
Introduction to Coordination Chemistry
Author: Geoffrey A. Lawrance
Publisher: John Wiley & Sons
ISBN: 1118681401
Category : Science
Languages : en
Pages : 307
Book Description
At the heart of coordination chemistry lies the coordinate bond, in its simplest sense arising from donation of a pair of electrons from a donor atom to an empty orbital on a central metalloid or metal. Metals overwhelmingly exist as their cations, but these are rarely met ‘naked’ – they are clothed in an array of other atoms, molecules or ions that involve coordinate covalent bonds (hence the name coordination compounds). These metal ion complexes are ubiquitous in nature, and are central to an array of natural and synthetic reactions. Written in a highly readable, descriptive and accessible style Introduction to Coordination Chemistry describes properties of coordination compounds such as colour, magnetism and reactivity as well as the logic in their assembly and nomenclature. It is illustrated with many examples of the importance of coordination chemistry in real life, and includes extensive references and a bibliography. Introduction to Coordination Chemistry is a comprehensive and insightful discussion of one of the primary fields of study in Inorganic Chemistry for both undergraduate and non-specialist readers.
Publisher: John Wiley & Sons
ISBN: 1118681401
Category : Science
Languages : en
Pages : 307
Book Description
At the heart of coordination chemistry lies the coordinate bond, in its simplest sense arising from donation of a pair of electrons from a donor atom to an empty orbital on a central metalloid or metal. Metals overwhelmingly exist as their cations, but these are rarely met ‘naked’ – they are clothed in an array of other atoms, molecules or ions that involve coordinate covalent bonds (hence the name coordination compounds). These metal ion complexes are ubiquitous in nature, and are central to an array of natural and synthetic reactions. Written in a highly readable, descriptive and accessible style Introduction to Coordination Chemistry describes properties of coordination compounds such as colour, magnetism and reactivity as well as the logic in their assembly and nomenclature. It is illustrated with many examples of the importance of coordination chemistry in real life, and includes extensive references and a bibliography. Introduction to Coordination Chemistry is a comprehensive and insightful discussion of one of the primary fields of study in Inorganic Chemistry for both undergraduate and non-specialist readers.
Advanced Inorganic Chemistry
Author: Narayan S. Hosmane
Publisher: Academic Press
ISBN: 012801993X
Category : Science
Languages : en
Pages : 278
Book Description
Advanced Inorganic Chemistry: Applications in Everyday Life connects key topics on the subject with actual experiences in nature and everyday life. Differing from other foundational texts with this emphasis on applications and examples, the text uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes. From this foundation, the text explores more advanced topics, such as: Ligands and Ligand Substitution Processes with an emphasis on Square-Planar Substitution and Octahedral Substitution Reactions in Inorganic Chemistry and Transition Metal Complexes, with a particular focus on Crystal-Field and Ligand-Field Theories, Electronic States and Spectra and Organometallic, Bioinorganic Compounds, including Carboranes and Metallacarboranes and their applications in Catalysis, Medicine and Pollution Control. Throughout the book, illustrative examples bring inorganic chemistry to life. For instance, biochemists and students will be interested in how coordination chemistry between the transition metals and the ligands has a direct correlation with cyanide or carbon monoxide poisoning (strong-field Cyanide or CO ligand versus weak-field Oxygen molecule). - Engaging discussion of key concepts with examples from the real world - Valuable coverage from the foundations of chemical bonds and stereochemistry to advanced topics, such as organometallic, bioinorganic, carboranes and environmental chemistry - Uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes
Publisher: Academic Press
ISBN: 012801993X
Category : Science
Languages : en
Pages : 278
Book Description
Advanced Inorganic Chemistry: Applications in Everyday Life connects key topics on the subject with actual experiences in nature and everyday life. Differing from other foundational texts with this emphasis on applications and examples, the text uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes. From this foundation, the text explores more advanced topics, such as: Ligands and Ligand Substitution Processes with an emphasis on Square-Planar Substitution and Octahedral Substitution Reactions in Inorganic Chemistry and Transition Metal Complexes, with a particular focus on Crystal-Field and Ligand-Field Theories, Electronic States and Spectra and Organometallic, Bioinorganic Compounds, including Carboranes and Metallacarboranes and their applications in Catalysis, Medicine and Pollution Control. Throughout the book, illustrative examples bring inorganic chemistry to life. For instance, biochemists and students will be interested in how coordination chemistry between the transition metals and the ligands has a direct correlation with cyanide or carbon monoxide poisoning (strong-field Cyanide or CO ligand versus weak-field Oxygen molecule). - Engaging discussion of key concepts with examples from the real world - Valuable coverage from the foundations of chemical bonds and stereochemistry to advanced topics, such as organometallic, bioinorganic, carboranes and environmental chemistry - Uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes
A Textbook of Inorganic Chemistry – Volume 1
Author: Mandeep Dalal
Publisher: Dalal Institute
ISBN: 8193872002
Category : Science
Languages : en
Pages : 482
Book Description
An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.
Publisher: Dalal Institute
ISBN: 8193872002
Category : Science
Languages : en
Pages : 482
Book Description
An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.
Valency and Molecular Structure
Author: E. Cartmell
Publisher: Butterworth-Heinemann
ISBN: 1483140601
Category : Science
Languages : en
Pages : 352
Book Description
Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction to the spectroscopy of complex compounds. Other topics include the experimental foundation of the quantum theory; molecular-orbital method; ionic, hydrogen, and metallic bonds; structures of some simple inorganic compounds; and electronic spectra of transition-metal complexes. This publication is a useful reference for undergraduate students majoring in chemistry and other affiliated science subjects.
Publisher: Butterworth-Heinemann
ISBN: 1483140601
Category : Science
Languages : en
Pages : 352
Book Description
Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction to the spectroscopy of complex compounds. Other topics include the experimental foundation of the quantum theory; molecular-orbital method; ionic, hydrogen, and metallic bonds; structures of some simple inorganic compounds; and electronic spectra of transition-metal complexes. This publication is a useful reference for undergraduate students majoring in chemistry and other affiliated science subjects.
Symmetry in Inorganic and Coordination Compounds
Author: Franca Morazzoni
Publisher: Springer Nature
ISBN: 3030629961
Category : Science
Languages : en
Pages : 196
Book Description
This book addresses the nature of the chemical bond in inorganic and coordination compounds. In particular, it explains how general symmetry rules can describe chemical bond of simple inorganic molecules. Since the complexity of studying even simple molecules requires approximate methods, this book introduces a quantum mechanical treatment taking into account the geometric peculiarities of the chemical compound. In the case of inorganic molecules, a convenient approximation comes from symmetry, which constrains both the electronic energies and the chemical bonds. The book also gives special emphasis on symmetry rules and compares the use of symmetry operators with that of Hamiltonian operators. Where possible, the reactivity of molecules is also rationalized in terms of these symmetry properties. As practical examples, electronic spectroscopy and magnetism give experimental confirmation of the predicted electronic energy levels. Adapted from university lecture course notes, this book is the ideal companion for any inorganic chemistry course dealing with group theory.
Publisher: Springer Nature
ISBN: 3030629961
Category : Science
Languages : en
Pages : 196
Book Description
This book addresses the nature of the chemical bond in inorganic and coordination compounds. In particular, it explains how general symmetry rules can describe chemical bond of simple inorganic molecules. Since the complexity of studying even simple molecules requires approximate methods, this book introduces a quantum mechanical treatment taking into account the geometric peculiarities of the chemical compound. In the case of inorganic molecules, a convenient approximation comes from symmetry, which constrains both the electronic energies and the chemical bonds. The book also gives special emphasis on symmetry rules and compares the use of symmetry operators with that of Hamiltonian operators. Where possible, the reactivity of molecules is also rationalized in terms of these symmetry properties. As practical examples, electronic spectroscopy and magnetism give experimental confirmation of the predicted electronic energy levels. Adapted from university lecture course notes, this book is the ideal companion for any inorganic chemistry course dealing with group theory.
General Chemistry
Author: Ralph H. Petrucci
Publisher: Prentice Hall
ISBN: 9780137032129
Category : Science
Languages : en
Pages : 10
Book Description
Publisher: Prentice Hall
ISBN: 9780137032129
Category : Science
Languages : en
Pages : 10
Book Description
Pincer Compounds
Author: David Morales-Morales
Publisher: Elsevier
ISBN: 0128129328
Category : Science
Languages : en
Pages : 756
Book Description
Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
Publisher: Elsevier
ISBN: 0128129328
Category : Science
Languages : en
Pages : 756
Book Description
Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
An Introduction to the Chemistry of Complex Compounds
Author: Aleksander Abramovich Grinberg
Publisher: Elsevier
ISBN: 1483184668
Category : Science
Languages : en
Pages : 388
Book Description
An Introduction to the Chemistry of Complex Compounds discusses the fundamental concepts that are essential in understanding the underlying principles of complex compounds. The coverage of the book includes the compounds of the hexa, penta, and tetrammine type; compounds of the tri, dl, monoamine and hexacido types for the coordination number of 6; and complex compounds with a coordination number of 4. The text also covers the effects and chemical properties of complex compounds, such as the nature of the force of complex formation; the mutual effects of coordinated groups; and acid-base properties, oxidation-reduction properties, and solution equilibriums of complex compounds. The book will be of great use to chemists and chemical engineers.
Publisher: Elsevier
ISBN: 1483184668
Category : Science
Languages : en
Pages : 388
Book Description
An Introduction to the Chemistry of Complex Compounds discusses the fundamental concepts that are essential in understanding the underlying principles of complex compounds. The coverage of the book includes the compounds of the hexa, penta, and tetrammine type; compounds of the tri, dl, monoamine and hexacido types for the coordination number of 6; and complex compounds with a coordination number of 4. The text also covers the effects and chemical properties of complex compounds, such as the nature of the force of complex formation; the mutual effects of coordinated groups; and acid-base properties, oxidation-reduction properties, and solution equilibriums of complex compounds. The book will be of great use to chemists and chemical engineers.