Author: V. K. Balakrishnan
Publisher: McGraw Hill Professional
ISBN: 9780070035751
Category : Juvenile Nonfiction
Languages : en
Pages : 220
Book Description
Confusing Textbooks? Missed Lectures? Tough Test Questions? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
Schaum's Outline of Combinatorics
Author: V. K. Balakrishnan
Publisher: McGraw Hill Professional
ISBN: 9780070035751
Category : Juvenile Nonfiction
Languages : en
Pages : 220
Book Description
Confusing Textbooks? Missed Lectures? Tough Test Questions? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
Publisher: McGraw Hill Professional
ISBN: 9780070035751
Category : Juvenile Nonfiction
Languages : en
Pages : 220
Book Description
Confusing Textbooks? Missed Lectures? Tough Test Questions? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
Problems in Combinatorics and Graph Theory
Author: Ioan Tomescu
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 362
Book Description
Covers the most important combinatorial structures and techniques. This is a book of problems and solutions which range in difficulty and scope from the elementary/student-oriented to open questions at the research level. Each problem is accompanied by a complete and detailed solution together with appropriate references to the mathematical literature, helping the reader not only to learn but to apply the relevant discrete methods. The text is unique in its range and variety -- some problems include straightforward manipulations while others are more complicated and require insights and a solid foundation of combinatorics and/or graph theory. Includes a dictionary of terms that makes many of the challenging problems accessible to those whose mathematical education is limited to highschool algebra.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 362
Book Description
Covers the most important combinatorial structures and techniques. This is a book of problems and solutions which range in difficulty and scope from the elementary/student-oriented to open questions at the research level. Each problem is accompanied by a complete and detailed solution together with appropriate references to the mathematical literature, helping the reader not only to learn but to apply the relevant discrete methods. The text is unique in its range and variety -- some problems include straightforward manipulations while others are more complicated and require insights and a solid foundation of combinatorics and/or graph theory. Includes a dictionary of terms that makes many of the challenging problems accessible to those whose mathematical education is limited to highschool algebra.
Combinatorial Problems and Exercises
Author: L. Lovász
Publisher: Elsevier
ISBN: 0080933092
Category : Mathematics
Languages : en
Pages : 636
Book Description
The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book.Combinatorial Problems and Exercises was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.
Publisher: Elsevier
ISBN: 0080933092
Category : Mathematics
Languages : en
Pages : 636
Book Description
The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book.Combinatorial Problems and Exercises was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.
Theory and Problems of Combinatorics
Author: C. Vasudev
Publisher: New Age International
ISBN: 8122417051
Category : Combinatorial analysis
Languages : en
Pages : 11
Book Description
Combinatorics Is The Mathematics Of Counting, Selecting And Arranging Objects. Combinatorics Include The Theory Of Permutations And Combinations. These Topics Have An Enormous Range Of Applications In Pure And Applied Mathematics And Computer Science. These Are Processes By Which We Organize Sets So That We Can Interpret And Apply The Data They Contain. Generally Speaking, Combinatorial Questions Ask Whether A Subset Of A Given Set Can Be Chosen And Arranged In A Way That Conforms With Certain Constraints And, If So, In How Many Ways It Can Be Done. Applications Of Combinatorics Play A Major Role In The Analysis Of Algorithms.For Example, It Is Often Necessary In Such Analysis To Count The Average Number Of Times That A Particular Portion Of An Algorithm Is Executed Over All Possible Data Sets. This Topic Also Includes Solution Of Difference Equations. Differences Are Required For Analysis Of Algorithmic Complexity, And Since Computers Are Frequently Used In The Numerical Solution Of Differential Equations Via Their Discretized Versions Which Are Difference Equations. It Also Deals With Questions About Configurations Of Sets, Families Of Finite Sets That Overlap According To Some Prescribed Numerical Or Geometrical Conditions. Skill In Using Combinatorial Techniques Is Needed In Almost Every Discipline Where Mathematics Is Applied.Salient Features * Over 1000 Problems Are Used To Illustrate Concepts, Related To Different Topics, And Introduce Applications. * Over 1000 Exercises In The Text With Many Different Types Of Questions Posed. * Precise Mathematical Language Is Used Without Excessive Formalism And Abstraction. * Precise Mathematical Language Is Used Without Excessive Formalism And Abstraction. * Problem Sets Are Started Clearly And Unambiguously And All Are Carefully Graded For Various Levels Of Difficulty.
Publisher: New Age International
ISBN: 8122417051
Category : Combinatorial analysis
Languages : en
Pages : 11
Book Description
Combinatorics Is The Mathematics Of Counting, Selecting And Arranging Objects. Combinatorics Include The Theory Of Permutations And Combinations. These Topics Have An Enormous Range Of Applications In Pure And Applied Mathematics And Computer Science. These Are Processes By Which We Organize Sets So That We Can Interpret And Apply The Data They Contain. Generally Speaking, Combinatorial Questions Ask Whether A Subset Of A Given Set Can Be Chosen And Arranged In A Way That Conforms With Certain Constraints And, If So, In How Many Ways It Can Be Done. Applications Of Combinatorics Play A Major Role In The Analysis Of Algorithms.For Example, It Is Often Necessary In Such Analysis To Count The Average Number Of Times That A Particular Portion Of An Algorithm Is Executed Over All Possible Data Sets. This Topic Also Includes Solution Of Difference Equations. Differences Are Required For Analysis Of Algorithmic Complexity, And Since Computers Are Frequently Used In The Numerical Solution Of Differential Equations Via Their Discretized Versions Which Are Difference Equations. It Also Deals With Questions About Configurations Of Sets, Families Of Finite Sets That Overlap According To Some Prescribed Numerical Or Geometrical Conditions. Skill In Using Combinatorial Techniques Is Needed In Almost Every Discipline Where Mathematics Is Applied.Salient Features * Over 1000 Problems Are Used To Illustrate Concepts, Related To Different Topics, And Introduce Applications. * Over 1000 Exercises In The Text With Many Different Types Of Questions Posed. * Precise Mathematical Language Is Used Without Excessive Formalism And Abstraction. * Precise Mathematical Language Is Used Without Excessive Formalism And Abstraction. * Problem Sets Are Started Clearly And Unambiguously And All Are Carefully Graded For Various Levels Of Difficulty.
102 Combinatorial Problems
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817682228
Category : Mathematics
Languages : en
Pages : 125
Book Description
"102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.
Publisher: Springer Science & Business Media
ISBN: 0817682228
Category : Mathematics
Languages : en
Pages : 125
Book Description
"102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.
Combinatorics
Author: Pavle Mladenović
Publisher: Springer
ISBN: 3030008312
Category : Mathematics
Languages : en
Pages : 372
Book Description
This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside's lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas.
Publisher: Springer
ISBN: 3030008312
Category : Mathematics
Languages : en
Pages : 372
Book Description
This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside's lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas.
Combinatorics and Graph Theory
Author: John Harris
Publisher: Springer Science & Business Media
ISBN: 0387797114
Category : Mathematics
Languages : en
Pages : 392
Book Description
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
Publisher: Springer Science & Business Media
ISBN: 0387797114
Category : Mathematics
Languages : en
Pages : 392
Book Description
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
Problems from the Discrete to the Continuous
Author: Ross G. Pinsky
Publisher: Springer
ISBN: 3319079654
Category : Mathematics
Languages : en
Pages : 165
Book Description
The primary intent of the book is to introduce an array of beautiful problems in a variety of subjects quickly, pithily and completely rigorously to graduate students and advanced undergraduates. The book takes a number of specific problems and solves them, the needed tools developed along the way in the context of the particular problems. It treats a melange of topics from combinatorial probability theory, number theory, random graph theory and combinatorics. The problems in this book involve the asymptotic analysis of a discrete construct, as some natural parameter of the system tends to infinity. Besides bridging discrete mathematics and mathematical analysis, the book makes a modest attempt at bridging disciplines. The problems were selected with an eye toward accessibility to a wide audience, including advanced undergraduate students. The book could be used for a seminar course in which students present the lectures.
Publisher: Springer
ISBN: 3319079654
Category : Mathematics
Languages : en
Pages : 165
Book Description
The primary intent of the book is to introduce an array of beautiful problems in a variety of subjects quickly, pithily and completely rigorously to graduate students and advanced undergraduates. The book takes a number of specific problems and solves them, the needed tools developed along the way in the context of the particular problems. It treats a melange of topics from combinatorial probability theory, number theory, random graph theory and combinatorics. The problems in this book involve the asymptotic analysis of a discrete construct, as some natural parameter of the system tends to infinity. Besides bridging discrete mathematics and mathematical analysis, the book makes a modest attempt at bridging disciplines. The problems were selected with an eye toward accessibility to a wide audience, including advanced undergraduate students. The book could be used for a seminar course in which students present the lectures.
Combinatorics and Random Matrix Theory
Author: Jinho Baik
Publisher: American Mathematical Soc.
ISBN: 0821848410
Category : Mathematics
Languages : en
Pages : 478
Book Description
Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.
Publisher: American Mathematical Soc.
ISBN: 0821848410
Category : Mathematics
Languages : en
Pages : 478
Book Description
Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.
Problems and Theorems in Classical Set Theory
Author: Peter Komjath
Publisher: Springer Science & Business Media
ISBN: 0387362193
Category : Mathematics
Languages : en
Pages : 492
Book Description
This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.
Publisher: Springer Science & Business Media
ISBN: 0387362193
Category : Mathematics
Languages : en
Pages : 492
Book Description
This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.