Theory and Mathematical Methods in Bioinformatics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theory and Mathematical Methods in Bioinformatics PDF full book. Access full book title Theory and Mathematical Methods in Bioinformatics by Shiyi Shen. Download full books in PDF and EPUB format.

Theory and Mathematical Methods in Bioinformatics

Theory and Mathematical Methods in Bioinformatics PDF Author: Shiyi Shen
Publisher: Springer Science & Business Media
ISBN: 3540748911
Category : Science
Languages : en
Pages : 450

Book Description
This monograph addresses, in a systematic and pedagogical manner, the mathematical methods and the algorithms required to deal with the molecularly based problems of bioinformatics. Prominent attention is given to pair-wise and multiple sequence alignment algorithms, stochastic models of mutations, modulus structure theory and protein configuration analysis. Strong links to the molecular structures of proteins, DNA and other biomolecules and their analyses are developed.

Theory and Mathematical Methods in Bioinformatics

Theory and Mathematical Methods in Bioinformatics PDF Author: Shiyi Shen
Publisher: Springer Science & Business Media
ISBN: 3540748911
Category : Science
Languages : en
Pages : 450

Book Description
This monograph addresses, in a systematic and pedagogical manner, the mathematical methods and the algorithms required to deal with the molecularly based problems of bioinformatics. Prominent attention is given to pair-wise and multiple sequence alignment algorithms, stochastic models of mutations, modulus structure theory and protein configuration analysis. Strong links to the molecular structures of proteins, DNA and other biomolecules and their analyses are developed.

Mathematics of Bioinformatics

Mathematics of Bioinformatics PDF Author: Matthew He
Publisher: John Wiley & Sons
ISBN: 1118099524
Category : Computers
Languages : en
Pages : 231

Book Description
Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.

Theory And Mathematical Methods For Bioinformatics, 1/e

Theory And Mathematical Methods For Bioinformatics, 1/e PDF Author: Shen
Publisher:
ISBN: 9788184896251
Category :
Languages : en
Pages :

Book Description
This monograph addresses, in a systematic and pedagogical manner, the mathematical methods and the algorithms required to deal with the molecularly based problems of bioinformatics. The book will be useful to students, research scientists and practitioners of bioinformatics and related fields, especially those who are interested in the underlying mathematical methods and theory. Among the methods presented in the book, prominent attention is given to pair-wise and multiple sequence alignment algorithms, stochastic models of mutations, modulus structure theory and protein configuration analysis. Strong links to the molecular structures of proteins, DNA and other biomolecules and their analyses are developed. In particular, for proteins an in-depth exposition of secondary structure prediction methods should be a valuable tool in both molecular biology and in applications to rational drug design. The book can also be used as a textbook and for this reason most of the chapters include exercises and problems at the level of a graduate program in bioinformatics.

Introduction to Mathematical Methods in Bioinformatics

Introduction to Mathematical Methods in Bioinformatics PDF Author: Alexander Isaev
Publisher: Springer Science & Business Media
ISBN: 9783540219736
Category : Science
Languages : en
Pages : 316

Book Description
This book looks at the mathematical foundations of the models currently in use. All existing books on bioinformatics are software-orientated and they concentrate on computer implementations of mathematical models of biology. This book is unique in the sense that it looks at the mathematical foundations of the models, which are crucial for correct interpretation of the outputs of the models.

Introduction to Mathematical Methods in Bioinformatics

Introduction to Mathematical Methods in Bioinformatics PDF Author: Alexander Isaev
Publisher: Springer
ISBN: 3540484264
Category : Science
Languages : en
Pages : 294

Book Description
This book looks at the mathematical foundations of the models currently in use. All existing books on bioinformatics are software-orientated and they concentrate on computer implementations of mathematical models of biology. This book is unique in the sense that it looks at the mathematical foundations of the models, which are crucial for correct interpretation of the outputs of the models.

Algebraic and Discrete Mathematical Methods for Modern Biology

Algebraic and Discrete Mathematical Methods for Modern Biology PDF Author: Raina Robeva
Publisher: Academic Press
ISBN: 0128012714
Category : Mathematics
Languages : en
Pages : 383

Book Description
Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. Examines significant questions in modern biology and their mathematical treatments Presents important mathematical concepts and tools in the context of essential biology Features material of interest to students in both mathematics and biology Presents chapters in modular format so coverage need not follow the Table of Contents Introduces projects appropriate for undergraduate research Utilizes freely accessible software for visualization, simulation, and analysis in modern biology Requires no calculus as a prerequisite Provides a complete Solutions Manual Features a companion website with supplementary resources

Pattern Discovery in Bioinformatics

Pattern Discovery in Bioinformatics PDF Author: Laxmi Parida
Publisher: CRC Press
ISBN: 1420010735
Category : Computers
Languages : en
Pages : 512

Book Description
The computational methods of bioinformatics are being used more and more to process the large volume of current biological data. Promoting an understanding of the underlying biology that produces this data, Pattern Discovery in Bioinformatics: Theory and Algorithms provides the tools to study regularities in biological data. Taking a systema

Towards a Mathematical Theory of Complex Biological Systems

Towards a Mathematical Theory of Complex Biological Systems PDF Author: Carlo Bianca
Publisher: World Scientific
ISBN: 9814340537
Category : Mathematics
Languages : en
Pages : 227

Book Description
This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, celular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling.

Mathematical Methods and Models in Biomedicine

Mathematical Methods and Models in Biomedicine PDF Author: Urszula Ledzewicz
Publisher: Springer Science & Business Media
ISBN: 1461441781
Category : Mathematics
Languages : en
Pages : 426

Book Description
Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

Statistical Methods in Bioinformatics

Statistical Methods in Bioinformatics PDF Author: Warren J. Ewens
Publisher: Springer Science & Business Media
ISBN: 0387400826
Category : Science
Languages : en
Pages : 616

Book Description
Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)