Theoretical and Numerical Studies of Phase Transitions and Error Thresholds in Topological Quantum Memories PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theoretical and Numerical Studies of Phase Transitions and Error Thresholds in Topological Quantum Memories PDF full book. Access full book title Theoretical and Numerical Studies of Phase Transitions and Error Thresholds in Topological Quantum Memories by Pejman Jouzdani. Download full books in PDF and EPUB format.

Theoretical and Numerical Studies of Phase Transitions and Error Thresholds in Topological Quantum Memories

Theoretical and Numerical Studies of Phase Transitions and Error Thresholds in Topological Quantum Memories PDF Author: Pejman Jouzdani
Publisher:
ISBN:
Category :
Languages : en
Pages : 166

Book Description
As another example of passive error correcting codes with intrinsic Hamiltonian, the toric code is introduced. We also analyze the dynamics of the errors in the toric code known as anyons. We show numerically how the addition of disorder to the physical system underlying the toric code slows down the dynamics of the anyons. We go further and numerically analyze the presence of time-dependent noise and the consequent delocalization of localized errors. The main portion of this dissertation is dedicated to the surface code. We study the surface code coupled to a non-interacting bosonic bath. We show how the interaction between the code and the bosonic bath can effectively induce correlated errors. These correlated errors may be corrected up to some extend. The extension beyond which quantum error correction seems impossible is the error threshold of the code. This threshold is analyzed by mapping the effective correlated error model onto a statistical model. We then study the phase transition in the statistical model. The analysis is in two parts. First, we carry out derivation of the effective correlated model, its mapping onto a statistical model, and perform an exact numerical analysis. Second, we employ a Monte Carlo method to extend the numerical analysis to large system size. We also tackle the problem of surface code with correlated and single-qubit errors by an exact mapping onto a two-dimensional Ising model with boundary fields. We show how the phase transition point in one model, the Ising model, coincides with the intrinsic error threshold of the other model, the surface code.

Theoretical and Numerical Studies of Phase Transitions and Error Thresholds in Topological Quantum Memories

Theoretical and Numerical Studies of Phase Transitions and Error Thresholds in Topological Quantum Memories PDF Author: Pejman Jouzdani
Publisher:
ISBN:
Category :
Languages : en
Pages : 166

Book Description
As another example of passive error correcting codes with intrinsic Hamiltonian, the toric code is introduced. We also analyze the dynamics of the errors in the toric code known as anyons. We show numerically how the addition of disorder to the physical system underlying the toric code slows down the dynamics of the anyons. We go further and numerically analyze the presence of time-dependent noise and the consequent delocalization of localized errors. The main portion of this dissertation is dedicated to the surface code. We study the surface code coupled to a non-interacting bosonic bath. We show how the interaction between the code and the bosonic bath can effectively induce correlated errors. These correlated errors may be corrected up to some extend. The extension beyond which quantum error correction seems impossible is the error threshold of the code. This threshold is analyzed by mapping the effective correlated error model onto a statistical model. We then study the phase transition in the statistical model. The analysis is in two parts. First, we carry out derivation of the effective correlated model, its mapping onto a statistical model, and perform an exact numerical analysis. Second, we employ a Monte Carlo method to extend the numerical analysis to large system size. We also tackle the problem of surface code with correlated and single-qubit errors by an exact mapping onto a two-dimensional Ising model with boundary fields. We show how the phase transition point in one model, the Ising model, coincides with the intrinsic error threshold of the other model, the surface code.

Topological Phase Transitions And New Developments

Topological Phase Transitions And New Developments PDF Author: Lars Brink
Publisher: World Scientific
ISBN: 9813271353
Category : Science
Languages : en
Pages : 263

Book Description
Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.

Quantum Phase Transitions

Quantum Phase Transitions PDF Author: Subir Sachdev
Publisher: Cambridge University Press
ISBN: 9780521004541
Category : Mathematics
Languages : en
Pages : 374

Book Description
Quantum Phase Transitions is the first book to describe in detail the fundamental changes that can occur in the macroscopic nature of matter at zero temperature due to small variations in a given external parameter. The subject plays a central role in the study of the electrical and magnetic properties of numerous important solid state materials. The author begins by developing the theory of quantum phase transitions in the simplest possible class of non-disordered, interacting systems - the quantum Ising and rotor models. Particular attention is paid to their non-zero temperature dynamic and transport properties in the vicinity of the quantum critical point. Several other quantum phase transitions of increasing complexity are then discussed and clarified. Throughout, the author interweaves experimental results with presentation of theoretical models, and well over 500 references are included. The book will be of great interest to graduate students and researchers in condensed matter physics.

Understanding Quantum Phase Transitions

Understanding Quantum Phase Transitions PDF Author:
Publisher:
ISBN: 9780429075629
Category : Electronic book
Languages : en
Pages : 728

Book Description
"Exploring a steadily growing field, this book focuses on quantum phase transitions (QPT), frontier area of research. It takes a look back as well as a look forward to the future and the many open problems that remain. The book covers new concepts and directions in QPT and specific models and systems closely tied to particular experimental realization or theoretical methods. Although mainly theoretical, the book includes experimental chapters that make the discussion of QPTs meaningful. The book also presents recent advances in the numerical methods used to study QPTs"--

Topological Quantum Computation

Topological Quantum Computation PDF Author: Zhenghan Wang
Publisher: American Mathematical Soc.
ISBN: 0821849301
Category : Computers
Languages : en
Pages : 134

Book Description
Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.

Numerical Studies on Quantum Phase Transition of Anderson Models

Numerical Studies on Quantum Phase Transition of Anderson Models PDF Author: Ying Wai Li
Publisher:
ISBN:
Category : Anderson model
Languages : en
Pages : 144

Book Description


Introduction to Topological Quantum Computation

Introduction to Topological Quantum Computation PDF Author: Jiannis K. Pachos
Publisher: Cambridge University Press
ISBN: 1139936689
Category : Science
Languages : en
Pages : 220

Book Description
Combining physics, mathematics and computer science, topological quantum computation is a rapidly expanding research area focused on the exploration of quantum evolutions that are immune to errors. In this book, the author presents a variety of different topics developed together for the first time, forming an excellent introduction to topological quantum computation. The makings of anyonic systems, their properties and their computational power are presented in a pedagogical way. Relevant calculations are fully explained, and numerous worked examples and exercises support and aid understanding. Special emphasis is given to the motivation and physical intuition behind every mathematical concept. Demystifying difficult topics by using accessible language, this book has broad appeal and is ideal for graduate students and researchers from various disciplines who want to get into this new and exciting research field.

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems PDF Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537

Book Description
Mathematics of Computing -- General.

Frustrated Spin Systems

Frustrated Spin Systems PDF Author: H. T. Diep
Publisher: World Scientific
ISBN: 9814440744
Category : Science
Languages : en
Pages : 644

Book Description
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can OCo within a single book OCo obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors.The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so."

Scale Invariance

Scale Invariance PDF Author: Annick LESNE
Publisher: Springer Science & Business Media
ISBN: 364215123X
Category : Science
Languages : en
Pages : 406

Book Description
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.