The Transcriptional Regulation of Memory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Transcriptional Regulation of Memory PDF full book. Access full book title The Transcriptional Regulation of Memory by Benedict C. Albensi. Download full books in PDF and EPUB format.

The Transcriptional Regulation of Memory

The Transcriptional Regulation of Memory PDF Author: Benedict C. Albensi
Publisher: Frontiers Media SA
ISBN: 2889198650
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 118

Book Description
The formation of various forms of memory involves a series of distinct cellular and molecular mechanisms, many of which are not fully understood. There are highly conserved pathways that are involved in learning, memory, and synaptic plasticity, which is the primary substrate for memory storage. The formation of short-term (across minutes) memory is mediated by local changes in synapses, while long-term (across hours to days) memory storage is associated with activation of transcription and synthesis of proteins that modify synaptic function. Transcription factors, which can either repress or activate transcription, play a vital role in driving protein synthesis underlying synaptic plasticity and memory, whereby protein synthesis provides the necessary building blocks to accommodate structural changes at the synapse that foster memory formation. Recent data implicate several families of transcription factors that appear critically important in the regulation of memory. In this Topic we will focus on the families of transcription factors thus far found to be critically involved in synaptic plasticity and memory formation. These include cAMP response element binding protein (CREB), Rel/nuclear factor B (Rel/NFB), CCAAT enhancer binding protein (C/EBP), and early growth response factor (Egr). In recent years, numerous studies have implicated epigenetic mechanisms, changes in gene activity and expression that occur without alteration in gene sequence, in the memory consolidation process. DNA methylation and chromatin remodeling are critically involved in learning and memory, supporting a role of epigenetic mechanisms. Here we provide more evidence of the importance of DNA methylation, histone posttranslational modifications and the role of histone acetylation and HDAC inhibitors in above mentioned processes.

The Transcriptional Regulation of Memory

The Transcriptional Regulation of Memory PDF Author: Benedict C. Albensi
Publisher: Frontiers Media SA
ISBN: 2889198650
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 118

Book Description
The formation of various forms of memory involves a series of distinct cellular and molecular mechanisms, many of which are not fully understood. There are highly conserved pathways that are involved in learning, memory, and synaptic plasticity, which is the primary substrate for memory storage. The formation of short-term (across minutes) memory is mediated by local changes in synapses, while long-term (across hours to days) memory storage is associated with activation of transcription and synthesis of proteins that modify synaptic function. Transcription factors, which can either repress or activate transcription, play a vital role in driving protein synthesis underlying synaptic plasticity and memory, whereby protein synthesis provides the necessary building blocks to accommodate structural changes at the synapse that foster memory formation. Recent data implicate several families of transcription factors that appear critically important in the regulation of memory. In this Topic we will focus on the families of transcription factors thus far found to be critically involved in synaptic plasticity and memory formation. These include cAMP response element binding protein (CREB), Rel/nuclear factor B (Rel/NFB), CCAAT enhancer binding protein (C/EBP), and early growth response factor (Egr). In recent years, numerous studies have implicated epigenetic mechanisms, changes in gene activity and expression that occur without alteration in gene sequence, in the memory consolidation process. DNA methylation and chromatin remodeling are critically involved in learning and memory, supporting a role of epigenetic mechanisms. Here we provide more evidence of the importance of DNA methylation, histone posttranslational modifications and the role of histone acetylation and HDAC inhibitors in above mentioned processes.

The Transcriptional Regulation of Memory

The Transcriptional Regulation of Memory PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The formation of various forms of memory involves a series of distinct cellular and molecular mechanisms, many of which are not fully understood. There are highly conserved pathways that are involved in learning, memory, and synaptic plasticity, which is the primary substrate for memory storage. The formation of short-term (across minutes) memory is mediated by local changes in synapses, while long-term (across hours to days) memory storage is associated with activation of transcription and synthesis of proteins that modify synaptic function. Transcription factors, which can either repress or activate transcription, play a vital role in driving protein synthesis underlying synaptic plasticity and memory, whereby protein synthesis provides the necessary building blocks to accommodate structural changes at the synapse that foster memory formation. Recent data implicate several families of transcription factors that appear critically important in the regulation of memory. In this Topic we will focus on the families of transcription factors thus far found to be critically involved in synaptic plasticity and memory formation. These include cAMP response element binding protein (CREB), Rel/nuclear factor B (Rel/NFB), CCAAT enhancer binding protein (C/EBP), and early growth response factor (Egr). In recent years, numerous studies have implicated epigenetic mechanisms, changes in gene activity and expression that occur without alteration in gene sequence, in the memory consolidation process. DNA methylation and chromatin remodeling are critically involved in learning and memory, supporting a role of epigenetic mechanisms. Here we provide more evidence of the importance of DNA methylation, histone posttranslational modifications and the role of histone acetylation and HDAC inhibitors in above mentioned processes.

Transcriptional Regulation of Memory T Cell Differentiation

Transcriptional Regulation of Memory T Cell Differentiation PDF Author: Myoungjoo Kim
Publisher:
ISBN:
Category :
Languages : en
Pages : 238

Book Description
Memory T cells protect hosts from pathogen reinfection, but how these cells emerge from a pool of antigen-experienced T cells is unclear. Here we show that mice lacking the transcription factor Foxol in activated CD8 + T cells had defective secondary, but not primary, responses to Listeria monocytogenes infection. Compared to short-lived effector T cells, memory precursor T cells expressed higher amounts of Foxo1, which promoted their generation and maintenance. Chromatin immunoprecipitation sequencing experiments revealed the transcription factor Tcf7 and the chemokine receptor Ccr7 as Foxo1-bound target genes, which have critical functions in central memory T cell differentiation and trafficking. These findings demonstrate that Foxol is selectively incorporated into the genetic program that regulates memory CD8 + T cell responses to infection.

The Regulation of Gene Expression During Memory Consolidation in the Hippocampus

The Regulation of Gene Expression During Memory Consolidation in the Hippocampus PDF Author: Shane Gary Poplawski
Publisher:
ISBN:
Category :
Languages : en
Pages : 438

Book Description
Memory consolidation is the process through which short-term memories are stabilized for long-term retention. New gene expression is required for this process to occur successfully. Although gene expression is a necessary component for memory consolidation, the targets and regulation of this gene expression are not well understood. The advent of next-generation sequencing technologies has provided a tremendous resource to probe important questions genome-wide in ways that were previously impossible. In this dissertation, I use next-generation sequencing to investigate the transcriptional targets of learning in the hippocampus. Chapter 1 reviews the previous research on the regulation of gene expression during memory consolidation. Previous work has implicated histone acetylation as an epigenomic modification that regulates long-term memory. In Chapter 2, I use RNA-seq to investigate the gene expression changes that occur 30 minutes after contextual fear conditioning. I use recently developed analysis techniques to improve our ability to detect changes and study alternative splicing genome-wide for the first time after learning. Chapter 3 investigates whether these gene expression changes are specific to contextual fear conditioning or shared with other hippocampus-dependent learning tasks such as object-location memory. I find that the transcriptional targets are similar between training paradigms, but their temporal activation differs. In Chapter 4, we use ChIP-seq, Sono-seq and MNase-seq to determine changes in histone acetylation, chromatin accessibility and nucleosome positioning that occur in response to learning. I find only small changes in H3K9/14ac, but large changes in chromatin accessibility. This may suggest that a multitude of histone modifications act in concert to regulate chromatin accessibility during memory consolidation.

Transcriptional and Chromatin Regulation in Adaptive and Innate Immune Cells

Transcriptional and Chromatin Regulation in Adaptive and Innate Immune Cells PDF Author: Keiko Ozato
Publisher: Frontiers Media SA
ISBN: 2889637239
Category :
Languages : en
Pages : 149

Book Description
Transcription depends on an ordered sequence of events, starting with (i) setting of the enhancer and chromatin environment, (ii) assembly of DNA binding and general transcription factors, (iii) initiation, elongation, processing of mRNA and termination, followed by (iv) creation of epigenetic marks and memory formation. Highlighting the importance of these activities, more than 10% total genes are dedicated to regulating transcriptional mechanisms. This area of research is highly active and new insights are continuously being added to our knowledge. Cells of the immune system have unique features of gene regulation to support diverse tasks required for innate and adaptive immunity. Innate immunity involves the recognition of external infectious and noxious agents as well as internal cancer cell components, and the elimination of these agents by non-specific mechanisms. Adaptive immunity involves gene rearrangement to achieve highly specific T and B cell responses, imparting the capability of self and non-self discrimination. This requires transcription and epigenetic regulation. Adaptive immunity also employs epigenetic memory, enabling recapitulation of prior transcription. Recent advances in nuclear architecture, chromatin structure, and transcriptional regulation have provided new insights into immune responses. The increased understanding of these molecular mechanisms is now affording opportunities to improve therapeutic strategies for various diseases.

Transcriptional Regulation by Neuronal Activity

Transcriptional Regulation by Neuronal Activity PDF Author: Serena Dudek
Publisher: Springer Science & Business Media
ISBN: 0387736093
Category : Medical
Languages : en
Pages : 426

Book Description
Regulation of gene transcription by neuronal activity is evident in a large number of neuronal processes ranging from neural development and refinement of neuronal connections to learning and response to injury. In the field of activity-dependent gene expression, rapid progress is being made that can impact these, and many other areas of neuroscience. This book offers an up-to-date picture of the field.

Novel Mechanisms of Memory

Novel Mechanisms of Memory PDF Author: Karl Peter Giese
Publisher: Springer
ISBN: 3319243640
Category : Medical
Languages : en
Pages : 190

Book Description
This book integrates discoveries from recent years to show the diversity of molecular mechanisms that contribute to memory consolidation, reconsolidation, extinction, and forgetting. It provides a special focus on the processes that govern functional and structural plasticity of dendritic spines. In nine chapters, new and important ideas related to learning and memory processes will be presented. Themes discussed include the role of AMPA receptors in memory, two signalling cascades involved in local spine remodelling and memory, the role of extracellular matrix proteins in memory, the regulation of gene expression and protein translation, and mechanisms of retrieval-induced memory modulation and forgetting. We believe that the study of these topics represents a great step toward understanding the complexity of the brain and the processes it governs.

Transcriptional Regulation by Neuronal Activity

Transcriptional Regulation by Neuronal Activity PDF Author: Ramendra N. Saha
Publisher: Springer
ISBN: 9783031685491
Category : Science
Languages : en
Pages : 0

Book Description
This book discusses the regulation of gene transcription by neuronal activity that is evident in a large number of neuronal processes ranging from neural development and refinement of neuronal connections to learning and response to injury. Transcriptional Regulation by Neuronal Activity: To the Nucleus and Back, 2nd edition illustrates how signals are transmitted to the nucleus in response to neuronal activity, which genes are regulated and how this is achieved, and how these changes in gene expression alter neuronal function. The aim of this second edition is to highlight key advances in the field since the first edition. The book is divided into four sections. The first highlights how signals get to the nucleus from the membrane in response to synaptic or neuronal activity. Included are chapters on the pathways that transmit signals from synapses to nuclei. The second section focuses on epigenetic regulatory processes of activity-induced gene transcription, an area that has exploded in the past few years. The third section navigates the role of activity-induced genes in physiological processes such as learning and memory, and human developmental disorders such as those associated with the autism spectrum. The fourth section highlights groundbreaking technological advances in the field, which have allowed activity-regulated transcription to be used as a tool to study learning and memory.

Introduction to Epigenetics

Introduction to Epigenetics PDF Author: Renato Paro
Publisher: Springer Nature
ISBN: 3030686701
Category : Science
Languages : en
Pages : 215

Book Description
This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease

Transcriptional Regulation in Eukaryotes

Transcriptional Regulation in Eukaryotes PDF Author: Michael F. Carey
Publisher: CSHL Press
ISBN: 9780879696351
Category : Medical
Languages : en
Pages : 684

Book Description
In the genome era, the analysis of gene expression has become a critical requirement in many laboratories. But there has been no comprehensive source of strategic, conceptual, and technical information to guide this often complex task. Transcriptional Regulation in Eukaryotes answers that need. Written by two experienced investigators, Michael Carey and Stephen Smale at the UCLA School of Medicine, and based in part on the Gene Expression course taught at Cold Spring Harbor Laboratory, this book directly addresses all the concerns of a laboratory studying the regulation of a newly isolated gene and the biochemistry of a new transcription factor. This important and unique book is essential reading for anyone pursuing the analysis of gene expression in model systems or disease states.