Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1518
Book Description
Mathematical Reviews
Random Graphs and Complex Networks
Author: Remco van der Hofstad
Publisher: Cambridge University Press
ISBN: 110717287X
Category : Computers
Languages : en
Pages : 341
Book Description
This classroom-tested text is the definitive introduction to the mathematics of network science, featuring examples and numerous exercises.
Publisher: Cambridge University Press
ISBN: 110717287X
Category : Computers
Languages : en
Pages : 341
Book Description
This classroom-tested text is the definitive introduction to the mathematics of network science, featuring examples and numerous exercises.
Combinatorics, Graph Theory and Computing
Author: Frederick Hoffman
Publisher: Springer Nature
ISBN: 3031529693
Category :
Languages : en
Pages : 491
Book Description
Publisher: Springer Nature
ISBN: 3031529693
Category :
Languages : en
Pages : 491
Book Description
50 years of Combinatorics, Graph Theory, and Computing
Author: Fan Chung
Publisher: CRC Press
ISBN: 1000752097
Category : Mathematics
Languages : en
Pages : 410
Book Description
50 Years of Combinatorics, Graph Theory, and Computing advances research in discrete mathematics by providing current research surveys, each written by experts in their subjects. The book also celebrates outstanding mathematics from 50 years at the Southeastern International Conference on Combinatorics, Graph Theory & Computing (SEICCGTC). The conference is noted for the dissemination and stimulation of research, while fostering collaborations among mathematical scientists at all stages of their careers. The authors of the chapters highlight open questions. The sections of the book include: Combinatorics; Graph Theory; Combinatorial Matrix Theory; Designs, Geometry, Packing and Covering. Readers will discover the breadth and depth of the presentations at the SEICCGTC, as well as current research in combinatorics, graph theory and computer science. Features: Commemorates 50 years of the Southeastern International Conference on Combinatorics, Graph Theory & Computing with research surveys Surveys highlight open questions to inspire further research Chapters are written by experts in their fields Extensive bibliographies are provided at the end of each chapter
Publisher: CRC Press
ISBN: 1000752097
Category : Mathematics
Languages : en
Pages : 410
Book Description
50 Years of Combinatorics, Graph Theory, and Computing advances research in discrete mathematics by providing current research surveys, each written by experts in their subjects. The book also celebrates outstanding mathematics from 50 years at the Southeastern International Conference on Combinatorics, Graph Theory & Computing (SEICCGTC). The conference is noted for the dissemination and stimulation of research, while fostering collaborations among mathematical scientists at all stages of their careers. The authors of the chapters highlight open questions. The sections of the book include: Combinatorics; Graph Theory; Combinatorial Matrix Theory; Designs, Geometry, Packing and Covering. Readers will discover the breadth and depth of the presentations at the SEICCGTC, as well as current research in combinatorics, graph theory and computer science. Features: Commemorates 50 years of the Southeastern International Conference on Combinatorics, Graph Theory & Computing with research surveys Surveys highlight open questions to inspire further research Chapters are written by experts in their fields Extensive bibliographies are provided at the end of each chapter
The Mathematics of Paul Erdős II
Author: Ronald L. Graham
Publisher: Springer Science & Business Media
ISBN: 1461472547
Category : Mathematics
Languages : en
Pages : 617
Book Description
This is the most comprehensive survey of the mathematical life of the legendary Paul Erdős (1913-1996), one of the most versatile and prolific mathematicians of our time. For the first time, all the main areas of Erdős' research are covered in a single project. Because of overwhelming response from the mathematical community, the project now occupies over 1000 pages, arranged into two volumes. These volumes contain both high level research articles as well as key articles that survey some of the cornerstones of Erdős' work, each written by a leading world specialist in the field. A special chapter "Early Days", rare photographs, and art related to Erdős complement this striking collection. A unique contribution is the bibliography on Erdős' publications: the most comprehensive ever published. This new edition, dedicated to the 100th anniversary of Paul Erdős' birth, contains updates on many of the articles from the two volumes of the first edition, several new articles from prominent mathematicians, a new introduction, and more biographical information about Paul Erdős with an updated list of publications. The second volume contains chapters on graph theory and combinatorics, extremal and Ramsey theory, and a section on infinity that covers Erdős' research on set theory. All of these chapters are essentially updated, particularly the extremal theory chapter that contains a survey of flag algebras, a new technique for solving extremal problems.
Publisher: Springer Science & Business Media
ISBN: 1461472547
Category : Mathematics
Languages : en
Pages : 617
Book Description
This is the most comprehensive survey of the mathematical life of the legendary Paul Erdős (1913-1996), one of the most versatile and prolific mathematicians of our time. For the first time, all the main areas of Erdős' research are covered in a single project. Because of overwhelming response from the mathematical community, the project now occupies over 1000 pages, arranged into two volumes. These volumes contain both high level research articles as well as key articles that survey some of the cornerstones of Erdős' work, each written by a leading world specialist in the field. A special chapter "Early Days", rare photographs, and art related to Erdős complement this striking collection. A unique contribution is the bibliography on Erdős' publications: the most comprehensive ever published. This new edition, dedicated to the 100th anniversary of Paul Erdős' birth, contains updates on many of the articles from the two volumes of the first edition, several new articles from prominent mathematicians, a new introduction, and more biographical information about Paul Erdős with an updated list of publications. The second volume contains chapters on graph theory and combinatorics, extremal and Ramsey theory, and a section on infinity that covers Erdős' research on set theory. All of these chapters are essentially updated, particularly the extremal theory chapter that contains a survey of flag algebras, a new technique for solving extremal problems.
Bulletin of the Institute of Combinatorics and Its Applications
Author:
Publisher:
ISBN:
Category : Combinatorial analysis
Languages : en
Pages : 404
Book Description
Publisher:
ISBN:
Category : Combinatorial analysis
Languages : en
Pages : 404
Book Description
Congressus Numerantium
Author:
Publisher:
ISBN:
Category : Combinatorial analysis
Languages : en
Pages : 464
Book Description
Publisher:
ISBN:
Category : Combinatorial analysis
Languages : en
Pages : 464
Book Description
Domination Games Played on Graphs
Author: Boštjan Brešar
Publisher: Springer Nature
ISBN: 3030690873
Category : Mathematics
Languages : en
Pages : 131
Book Description
This concise monograph present the complete history of the domination game and its variants up to the most recent developments and will stimulate research on closely related topics, establishing a key reference for future developments. The crux of the discussion surrounds new methods and ideas that were developed within the theory, led by the imagination strategy, the Continuation Principle, and the discharging method of Bujtás, to prove results about domination game invariants. A toolbox of proof techniques is provided for the reader to obtain results on the domination game and its variants. Powerful proof methods such as the imagination strategy are presented. The Continuation Principle is developed, which provides a much-used monotonicity property of the game domination number. In addition, the reader is exposed to the discharging method of Bujtás. The power of this method was shown by improving the known upper bound, in terms of a graph's order, on the (ordinary) domination number of graphs with minimum degree between 5 and 50. The book is intended primarily for students in graph theory as well as established graph theorists and it can be enjoyed by anyone with a modicum of mathematical maturity. The authors include exact results for several families of graphs, present what is known about the domination game played on subgraphs and trees, and provide the reader with the computational complexity aspects of domination games. Versions of the games which involve only the “slow” player yield the Grundy domination numbers, which connect the topic of the book with some concepts from linear algebra such as zero-forcing sets and minimum rank. More than a dozen other related games on graphs and hypergraphs are presented in the book. In all these games there are problems waiting to be solved, so the area is rich for further research. The domination game belongs to the growing family of competitive optimization graph games. The game is played by two competitors who take turns adding a vertex to a set of chosen vertices. They collaboratively produce a special structure in the underlying host graph, namely a dominating set. The two players have complementary goals: one seeks to minimize the size of the chosen set while the other player tries to make it as large as possible. The game is not one that is either won or lost. Instead, if both players employ an optimal strategy that is consistent with their goals, the cardinality of the chosen set is a graphical invariant, called the game domination number of the graph. To demonstrate that this is indeed a graphical invariant, the game tree of a domination game played on a graph is presented for the first time in the literature.
Publisher: Springer Nature
ISBN: 3030690873
Category : Mathematics
Languages : en
Pages : 131
Book Description
This concise monograph present the complete history of the domination game and its variants up to the most recent developments and will stimulate research on closely related topics, establishing a key reference for future developments. The crux of the discussion surrounds new methods and ideas that were developed within the theory, led by the imagination strategy, the Continuation Principle, and the discharging method of Bujtás, to prove results about domination game invariants. A toolbox of proof techniques is provided for the reader to obtain results on the domination game and its variants. Powerful proof methods such as the imagination strategy are presented. The Continuation Principle is developed, which provides a much-used monotonicity property of the game domination number. In addition, the reader is exposed to the discharging method of Bujtás. The power of this method was shown by improving the known upper bound, in terms of a graph's order, on the (ordinary) domination number of graphs with minimum degree between 5 and 50. The book is intended primarily for students in graph theory as well as established graph theorists and it can be enjoyed by anyone with a modicum of mathematical maturity. The authors include exact results for several families of graphs, present what is known about the domination game played on subgraphs and trees, and provide the reader with the computational complexity aspects of domination games. Versions of the games which involve only the “slow” player yield the Grundy domination numbers, which connect the topic of the book with some concepts from linear algebra such as zero-forcing sets and minimum rank. More than a dozen other related games on graphs and hypergraphs are presented in the book. In all these games there are problems waiting to be solved, so the area is rich for further research. The domination game belongs to the growing family of competitive optimization graph games. The game is played by two competitors who take turns adding a vertex to a set of chosen vertices. They collaboratively produce a special structure in the underlying host graph, namely a dominating set. The two players have complementary goals: one seeks to minimize the size of the chosen set while the other player tries to make it as large as possible. The game is not one that is either won or lost. Instead, if both players employ an optimal strategy that is consistent with their goals, the cardinality of the chosen set is a graphical invariant, called the game domination number of the graph. To demonstrate that this is indeed a graphical invariant, the game tree of a domination game played on a graph is presented for the first time in the literature.
Crossing Numbers of Graphs
Author: Marcus Schaefer
Publisher: CRC Press
ISBN: 1351648446
Category : Mathematics
Languages : en
Pages : 272
Book Description
Crossing Numbers of Graphs is the first book devoted to the crossing number, an increasingly popular object of study with surprising connections. The field has matured into a large body of work, which includes identifiable core results and techniques. The book presents a wide variety of ideas and techniques in topological graph theory, discrete geometry, and computer science. The first part of the text deals with traditional crossing number, crossing number values, crossing lemma, related parameters, computational complexity, and algorithms. The second part includes the rich history of alternative crossing numbers, the rectilinear crossing number, the pair crossing number, and the independent odd crossing number.It also includes applications of the crossing number outside topological graph theory. Aimed at graduate students and professionals in both mathematics and computer science The first book of its kind devoted to the topic Authored by a noted authority in crossing numbers
Publisher: CRC Press
ISBN: 1351648446
Category : Mathematics
Languages : en
Pages : 272
Book Description
Crossing Numbers of Graphs is the first book devoted to the crossing number, an increasingly popular object of study with surprising connections. The field has matured into a large body of work, which includes identifiable core results and techniques. The book presents a wide variety of ideas and techniques in topological graph theory, discrete geometry, and computer science. The first part of the text deals with traditional crossing number, crossing number values, crossing lemma, related parameters, computational complexity, and algorithms. The second part includes the rich history of alternative crossing numbers, the rectilinear crossing number, the pair crossing number, and the independent odd crossing number.It also includes applications of the crossing number outside topological graph theory. Aimed at graduate students and professionals in both mathematics and computer science The first book of its kind devoted to the topic Authored by a noted authority in crossing numbers
Graph Drawing
Author: Joe Marks
Publisher: Springer Science & Business Media
ISBN: 3540415548
Category : Computers
Languages : en
Pages : 431
Book Description
This book constitutes the thoroughly refereed post-proceedings of the 8th International Symposium on Graph Drawing, GD 2000, held in Colonial Williamsburg, VA, USA, in September 2000. The 36 revised full papers presented were carefully reviewed and selected from a total of 68 submissions. The book presents topical sections on empirical studies and standards, theory, application and systems, force-directed layout, k-level graph layout, orthogonal drawing, symmetry and incremental layout, and reports on a workshop on graph data formats and on the annual GD graph drawing contest.
Publisher: Springer Science & Business Media
ISBN: 3540415548
Category : Computers
Languages : en
Pages : 431
Book Description
This book constitutes the thoroughly refereed post-proceedings of the 8th International Symposium on Graph Drawing, GD 2000, held in Colonial Williamsburg, VA, USA, in September 2000. The 36 revised full papers presented were carefully reviewed and selected from a total of 68 submissions. The book presents topical sections on empirical studies and standards, theory, application and systems, force-directed layout, k-level graph layout, orthogonal drawing, symmetry and incremental layout, and reports on a workshop on graph data formats and on the annual GD graph drawing contest.