Author: John Leigh Smeathman Hatton
Publisher: Cambridge University Press
ISBN: 1108013104
Category : Mathematics
Languages : en
Pages : 232
Book Description
This 1920 publication explores the relationship between real and imaginary non-Euclidean geometry through graphical representations of imaginary geometry.
The Theory of the Imaginary in Geometry
Author: John Leigh Smeathman Hatton
Publisher: Cambridge University Press
ISBN: 1108013104
Category : Mathematics
Languages : en
Pages : 232
Book Description
This 1920 publication explores the relationship between real and imaginary non-Euclidean geometry through graphical representations of imaginary geometry.
Publisher: Cambridge University Press
ISBN: 1108013104
Category : Mathematics
Languages : en
Pages : 232
Book Description
This 1920 publication explores the relationship between real and imaginary non-Euclidean geometry through graphical representations of imaginary geometry.
Imaginaries in Geometry
Author: Pavel Alexandrovich Florensky
Publisher: Philosophy
ISBN: 9788869773105
Category : Philosophy
Languages : en
Pages : 114
Book Description
This is the first complete English translation of Pavel Florensky's original and ambitious attempt to arrive at a geometric representation of imaginary numbers, in a context that had already captured the attention of other mathematicians, including Gauss, Argan, Cauchy and Bellavitis. Florensky did not limit his attempt solely to complex projective geometry, but extended it to encompass Ptolemaic-Dantean cosmology and Einstein's Principle of Relativity, as well as a new epistemological theory. The resulting treatise combines various disciplines and explores the relationship between an immanent realm of knowledge and a transcendent one.
Publisher: Philosophy
ISBN: 9788869773105
Category : Philosophy
Languages : en
Pages : 114
Book Description
This is the first complete English translation of Pavel Florensky's original and ambitious attempt to arrive at a geometric representation of imaginary numbers, in a context that had already captured the attention of other mathematicians, including Gauss, Argan, Cauchy and Bellavitis. Florensky did not limit his attempt solely to complex projective geometry, but extended it to encompass Ptolemaic-Dantean cosmology and Einstein's Principle of Relativity, as well as a new epistemological theory. The resulting treatise combines various disciplines and explores the relationship between an immanent realm of knowledge and a transcendent one.
New Foundations for Classical Mechanics
Author: D. Hestenes
Publisher: Springer Science & Business Media
ISBN: 0306471221
Category : Science
Languages : en
Pages : 716
Book Description
(revised) This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics.
Publisher: Springer Science & Business Media
ISBN: 0306471221
Category : Science
Languages : en
Pages : 716
Book Description
(revised) This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics.
Dr. Euler's Fabulous Formula
Author: Paul J. Nahin
Publisher: Princeton University Press
ISBN: 0691175918
Category : Mathematics
Languages : en
Pages : 416
Book Description
In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula—long regarded as the gold standard for mathematical beauty—and shows why it still lies at the heart of complex number theory. In some ways a sequel to Nahin's An Imaginary Tale, this book examines the many applications of complex numbers alongside intriguing stories from the history of mathematics. Dr. Euler's Fabulous Formula is accessible to any reader familiar with calculus and differential equations, and promises to inspire mathematicians for years to come.
Publisher: Princeton University Press
ISBN: 0691175918
Category : Mathematics
Languages : en
Pages : 416
Book Description
In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula—long regarded as the gold standard for mathematical beauty—and shows why it still lies at the heart of complex number theory. In some ways a sequel to Nahin's An Imaginary Tale, this book examines the many applications of complex numbers alongside intriguing stories from the history of mathematics. Dr. Euler's Fabulous Formula is accessible to any reader familiar with calculus and differential equations, and promises to inspire mathematicians for years to come.
The Theory of the Imaginary in Geometry
Author: J L S (John Leigh Smeathman) Hatton
Publisher: Franklin Classics
ISBN: 9780343095307
Category :
Languages : en
Pages : 226
Book Description
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Franklin Classics
ISBN: 9780343095307
Category :
Languages : en
Pages : 226
Book Description
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
An Imaginary Tale
Author: Paul Nahin
Publisher: Princeton University Press
ISBN: 1400833892
Category : Mathematics
Languages : en
Pages : 297
Book Description
Today complex numbers have such widespread practical use--from electrical engineering to aeronautics--that few people would expect the story behind their derivation to be filled with adventure and enigma. In An Imaginary Tale, Paul Nahin tells the 2000-year-old history of one of mathematics' most elusive numbers, the square root of minus one, also known as i. He recreates the baffling mathematical problems that conjured it up, and the colorful characters who tried to solve them. In 1878, when two brothers stole a mathematical papyrus from the ancient Egyptian burial site in the Valley of Kings, they led scholars to the earliest known occurrence of the square root of a negative number. The papyrus offered a specific numerical example of how to calculate the volume of a truncated square pyramid, which implied the need for i. In the first century, the mathematician-engineer Heron of Alexandria encountered I in a separate project, but fudged the arithmetic; medieval mathematicians stumbled upon the concept while grappling with the meaning of negative numbers, but dismissed their square roots as nonsense. By the time of Descartes, a theoretical use for these elusive square roots--now called "imaginary numbers"--was suspected, but efforts to solve them led to intense, bitter debates. The notorious i finally won acceptance and was put to use in complex analysis and theoretical physics in Napoleonic times. Addressing readers with both a general and scholarly interest in mathematics, Nahin weaves into this narrative entertaining historical facts and mathematical discussions, including the application of complex numbers and functions to important problems, such as Kepler's laws of planetary motion and ac electrical circuits. This book can be read as an engaging history, almost a biography, of one of the most evasive and pervasive "numbers" in all of mathematics. Some images inside the book are unavailable due to digital copyright restrictions.
Publisher: Princeton University Press
ISBN: 1400833892
Category : Mathematics
Languages : en
Pages : 297
Book Description
Today complex numbers have such widespread practical use--from electrical engineering to aeronautics--that few people would expect the story behind their derivation to be filled with adventure and enigma. In An Imaginary Tale, Paul Nahin tells the 2000-year-old history of one of mathematics' most elusive numbers, the square root of minus one, also known as i. He recreates the baffling mathematical problems that conjured it up, and the colorful characters who tried to solve them. In 1878, when two brothers stole a mathematical papyrus from the ancient Egyptian burial site in the Valley of Kings, they led scholars to the earliest known occurrence of the square root of a negative number. The papyrus offered a specific numerical example of how to calculate the volume of a truncated square pyramid, which implied the need for i. In the first century, the mathematician-engineer Heron of Alexandria encountered I in a separate project, but fudged the arithmetic; medieval mathematicians stumbled upon the concept while grappling with the meaning of negative numbers, but dismissed their square roots as nonsense. By the time of Descartes, a theoretical use for these elusive square roots--now called "imaginary numbers"--was suspected, but efforts to solve them led to intense, bitter debates. The notorious i finally won acceptance and was put to use in complex analysis and theoretical physics in Napoleonic times. Addressing readers with both a general and scholarly interest in mathematics, Nahin weaves into this narrative entertaining historical facts and mathematical discussions, including the application of complex numbers and functions to important problems, such as Kepler's laws of planetary motion and ac electrical circuits. This book can be read as an engaging history, almost a biography, of one of the most evasive and pervasive "numbers" in all of mathematics. Some images inside the book are unavailable due to digital copyright restrictions.
Principles of Geometry
Author: H. F. Baker
Publisher: Cambridge University Press
ISBN: 1108017770
Category : Mathematics
Languages : en
Pages : 204
Book Description
A benchmark study of projective geometry and the birational theory of surfaces, first published between 1922 and 1925.
Publisher: Cambridge University Press
ISBN: 1108017770
Category : Mathematics
Languages : en
Pages : 204
Book Description
A benchmark study of projective geometry and the birational theory of surfaces, first published between 1922 and 1925.
Lobachevski Illuminated
Author: Seth Braver
Publisher: American Mathematical Soc.
ISBN: 1470456400
Category : Education
Languages : en
Pages : 227
Book Description
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2015! Lobachevski Illuminated provides an historical introduction to non-Euclidean geometry. Within its pages, readers will be guided step-by-step through a new translation of Lobachevski's groundbreaking book, The Theory of Parallels. Extensive commentary situates Lobachevski's work in its mathematical, historical, and philosophical context, thus granting readers a vision of the mysterious and beautiful world of non-Euclidean geometry as seen through the eyes of one of its discoverers. Although Lobachevski's 170-year-old text is challenging to read on its own, Seth Braver's carefully arranged “illuminations” render this classic accessible to any modern reader (student, professional, or layman) undaunted by high school mathematics.
Publisher: American Mathematical Soc.
ISBN: 1470456400
Category : Education
Languages : en
Pages : 227
Book Description
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2015! Lobachevski Illuminated provides an historical introduction to non-Euclidean geometry. Within its pages, readers will be guided step-by-step through a new translation of Lobachevski's groundbreaking book, The Theory of Parallels. Extensive commentary situates Lobachevski's work in its mathematical, historical, and philosophical context, thus granting readers a vision of the mysterious and beautiful world of non-Euclidean geometry as seen through the eyes of one of its discoverers. Although Lobachevski's 170-year-old text is challenging to read on its own, Seth Braver's carefully arranged “illuminations” render this classic accessible to any modern reader (student, professional, or layman) undaunted by high school mathematics.
Theory of Parallels
Author: Nikolaj Ivanovič Lobačevskij
Publisher: Independently Published
ISBN: 9781099688812
Category :
Languages : en
Pages : 52
Book Description
LOBACHEVSKY was the first man ever to publish a non-Euclidean geometry. Of the immortal essay now first appearing in English Gauss said, "The author has treated the matter with a master-hand and in the true geometer's spirit. I think I ought to call your attention to this book, whose perusal cannot fail to give you the most vivid pleasure." Clifford says, "It is quite simple, merely Euclid without the vicious assumption, but the way things come out of one another is quite lovely." * * * "What Vesalius was to Galen, what Copernicus was to Ptolemy, that was Lobachevsky to Euclid." Says Sylvester, "In Quaternions the example has been given of Algebra released from the yoke of the commutative principle of multiplication - an emancipation somewhat akin to Lobachevsky's of Geometry from Euclid's noted empirical axiom." Cayley says, "It is well known that Euclid's twelfth axiom, even in Playfair's form of it, has been considered as needing demonstration; and that Lobachevsky constructed a perfectly consistent theory, where- in this axiom was assumed not to hold good, or say a system of non- Euclidean plane geometry. There is a like system of non-Euclidean solid geometry." GEORGE BRUCE HALSTED. 2407 San Marcos Street, Austin, Texas. * * * *From the TRANSLATOR'S INTRODUCTION. "Prove all things, hold fast that which is good," does not mean demonstrate everything. From nothing assumed, nothing can be proved. "Geometry without axioms," was a book which went through several editions, and still has historical value. But now a volume with such a title would, without opening it, be set down as simply the work of a paradoxer. The set of axioms far the most influential in the intellectual history of the world was put together in Egypt; but really it owed nothing to the Egyptian race, drew nothing from the boasted lore of Egypt's priests. The Papyrus of the Rhind, belonging to the British Museum, but given to the world by the erudition of a German Egyptologist, Eisenlohr, and a German historian of mathematics, Cantor, gives us more knowledge of the state of mathematics in ancient Egypt than all else previously accessible to the modern world. Its whole testimony con- firms with overwhelming force the position that Geometry as a science, strict and self-conscious deductive reasoning, was created by the subtle intellect of the same race whose bloom in art still overawes us in the Venus of Milo, the Apollo Belvidere, the Laocoon. In a geometry occur the most noted set of axioms, the geometry of Euclid, a pure Greek, professor at the University of Alexandria. Not only at its very birth did this typical product of the Greek genius assume sway as ruler in the pure sciences, not only does its first efflorescence carry us through the splendid days of Theon and Hypatia, but unlike the latter, fanatics cannot murder it; that dismal flood, the dark ages, cannot drown it. Like the phoenix of its native Egypt, it rises with the new birth of culture. An Anglo-Saxon, Adelard of Bath, finds it clothed in Arabic vestments in the land of the Alhambra. Then clothed in Latin, it and the new-born printing press confer honor on each other. Finally back again in its original Greek, it is published first in queenly Basel, then in stately Oxford. The latest edition in Greek is from Leipsic's learned presses.
Publisher: Independently Published
ISBN: 9781099688812
Category :
Languages : en
Pages : 52
Book Description
LOBACHEVSKY was the first man ever to publish a non-Euclidean geometry. Of the immortal essay now first appearing in English Gauss said, "The author has treated the matter with a master-hand and in the true geometer's spirit. I think I ought to call your attention to this book, whose perusal cannot fail to give you the most vivid pleasure." Clifford says, "It is quite simple, merely Euclid without the vicious assumption, but the way things come out of one another is quite lovely." * * * "What Vesalius was to Galen, what Copernicus was to Ptolemy, that was Lobachevsky to Euclid." Says Sylvester, "In Quaternions the example has been given of Algebra released from the yoke of the commutative principle of multiplication - an emancipation somewhat akin to Lobachevsky's of Geometry from Euclid's noted empirical axiom." Cayley says, "It is well known that Euclid's twelfth axiom, even in Playfair's form of it, has been considered as needing demonstration; and that Lobachevsky constructed a perfectly consistent theory, where- in this axiom was assumed not to hold good, or say a system of non- Euclidean plane geometry. There is a like system of non-Euclidean solid geometry." GEORGE BRUCE HALSTED. 2407 San Marcos Street, Austin, Texas. * * * *From the TRANSLATOR'S INTRODUCTION. "Prove all things, hold fast that which is good," does not mean demonstrate everything. From nothing assumed, nothing can be proved. "Geometry without axioms," was a book which went through several editions, and still has historical value. But now a volume with such a title would, without opening it, be set down as simply the work of a paradoxer. The set of axioms far the most influential in the intellectual history of the world was put together in Egypt; but really it owed nothing to the Egyptian race, drew nothing from the boasted lore of Egypt's priests. The Papyrus of the Rhind, belonging to the British Museum, but given to the world by the erudition of a German Egyptologist, Eisenlohr, and a German historian of mathematics, Cantor, gives us more knowledge of the state of mathematics in ancient Egypt than all else previously accessible to the modern world. Its whole testimony con- firms with overwhelming force the position that Geometry as a science, strict and self-conscious deductive reasoning, was created by the subtle intellect of the same race whose bloom in art still overawes us in the Venus of Milo, the Apollo Belvidere, the Laocoon. In a geometry occur the most noted set of axioms, the geometry of Euclid, a pure Greek, professor at the University of Alexandria. Not only at its very birth did this typical product of the Greek genius assume sway as ruler in the pure sciences, not only does its first efflorescence carry us through the splendid days of Theon and Hypatia, but unlike the latter, fanatics cannot murder it; that dismal flood, the dark ages, cannot drown it. Like the phoenix of its native Egypt, it rises with the new birth of culture. An Anglo-Saxon, Adelard of Bath, finds it clothed in Arabic vestments in the land of the Alhambra. Then clothed in Latin, it and the new-born printing press confer honor on each other. Finally back again in its original Greek, it is published first in queenly Basel, then in stately Oxford. The latest edition in Greek is from Leipsic's learned presses.
The Theory of the Imaginary in Geometry: Together with the Trigonometry of the Imaginary
Author: John Leigh Smeathman Hatton
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 0
Book Description