The Theory of Group Characters and Matrix Representations of Groups PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Theory of Group Characters and Matrix Representations of Groups PDF full book. Access full book title The Theory of Group Characters and Matrix Representations of Groups by Dudley Ernest Littlewood. Download full books in PDF and EPUB format.

The Theory of Group Characters and Matrix Representations of Groups

The Theory of Group Characters and Matrix Representations of Groups PDF Author: Dudley Ernest Littlewood
Publisher: American Mathematical Soc.
ISBN: 9780821874356
Category : Mathematics
Languages : en
Pages : 328

Book Description
Originally written in 1940, this book remains a classical source on representations and characters of finite and compact groups. The book starts with necessary information about matrices, algebras, and groups. Then the author proceeds to representations of finite groups. Of particular interest in this part of the book are several chapters devoted to representations and characters of symmetric groups and the closely related theory of symmetric polynomials. The concluding chapterspresent the representation theory of classical compact Lie groups, including a detailed description of representations of the unitary and orthogonal groups. The book, which can be read with minimal prerequisites (an undergraduate algebra course), allows the reader to get a good understanding ofbeautiful classical results about group representations.

The Theory of Group Characters and Matrix Representations of Groups

The Theory of Group Characters and Matrix Representations of Groups PDF Author: Dudley Ernest Littlewood
Publisher: American Mathematical Soc.
ISBN: 9780821874356
Category : Mathematics
Languages : en
Pages : 328

Book Description
Originally written in 1940, this book remains a classical source on representations and characters of finite and compact groups. The book starts with necessary information about matrices, algebras, and groups. Then the author proceeds to representations of finite groups. Of particular interest in this part of the book are several chapters devoted to representations and characters of symmetric groups and the closely related theory of symmetric polynomials. The concluding chapterspresent the representation theory of classical compact Lie groups, including a detailed description of representations of the unitary and orthogonal groups. The book, which can be read with minimal prerequisites (an undergraduate algebra course), allows the reader to get a good understanding ofbeautiful classical results about group representations.

The Theory of Group Characters and Matrix Representations of Groups

The Theory of Group Characters and Matrix Representations of Groups PDF Author: Dudley Ernest Littlewood
Publisher: American Mathematical Soc.
ISBN: 0821840673
Category : Mathematics
Languages : en
Pages : 322

Book Description
Originally written in 1940, this book remains a classical source on representations and characters of finite and compact groups. The book starts with necessary information about matrices, algebras, and groups. Then the author proceeds to representations of finite groups. Of particular interest in this part of the book are several chapters devoted to representations and characters of symmetric groups and the closely related theory of symmetric polynomials. The concluding chapters present the representation theory of classical compact Lie groups, including a detailed description of representations of the unitary and orthogonal groups. The book, which can be read with minimal prerequisites (an undergraduate algebra course), allows the reader to get a good understanding of beautiful classical results about group representations.

Representations and Characters of Groups

Representations and Characters of Groups PDF Author: Gordon James
Publisher: Cambridge University Press
ISBN: 1139811053
Category : Mathematics
Languages : en
Pages : 436

Book Description
This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.

A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory PDF Author: Peter Webb
Publisher: Cambridge University Press
ISBN: 1107162394
Category : Mathematics
Languages : en
Pages : 339

Book Description
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.

Introduction to Representation Theory

Introduction to Representation Theory PDF Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240

Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Representation Theory of Finite Groups

Representation Theory of Finite Groups PDF Author: Benjamin Steinberg
Publisher: Springer Science & Business Media
ISBN: 1461407761
Category : Mathematics
Languages : en
Pages : 166

Book Description
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.

Character Theory of Finite Groups

Character Theory of Finite Groups PDF Author: I. Martin Isaacs
Publisher: American Mathematical Soc.
ISBN: 0821842293
Category : Mathematics
Languages : en
Pages : 322

Book Description
Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite challenging. In addition to the development of the basic theory (using a cleaner notation than previously), a number of more specialized topics are covered with accessible presentations. These include projective representations, the basics of the Schur index, irreducible character degrees and group structure, complex linear groups, exceptional characters, and a fairly extensive introduction to blocks and Brauer characters. This is a corrected reprint of the original 1976 version, later reprinted by Dover. Since 1976 it has become the standard reference for character theory, appearing in the bibliography of almost every research paper in the subject. It is largely self-contained, requiring of the reader only the most basic facts of linear algebra, group theory, Galois theory and ring and module theory.

Modular Representation Theory of Finite Groups

Modular Representation Theory of Finite Groups PDF Author: Peter Schneider
Publisher: Springer Science & Business Media
ISBN: 1447148320
Category : Mathematics
Languages : en
Pages : 183

Book Description
Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space. For finite groups the theory comes in two distinct flavours. In the 'semisimple case' (for example over the field of complex numbers) one can use character theory to completely understand the representations. This by far is not sufficient when the characteristic of the field divides the order of the group. Modular Representation Theory of finite Groups comprises this second situation. Many additional tools are needed for this case. To mention some, there is the systematic use of Grothendieck groups leading to the Cartan matrix and the decomposition matrix of the group as well as Green's direct analysis of indecomposable representations. There is also the strategy of writing the category of all representations as the direct product of certain subcategories, the so-called 'blocks' of the group. Brauer's work then establishes correspondences between the blocks of the original group and blocks of certain subgroups the philosophy being that one is thereby reduced to a simpler situation. In particular, one can measure how nonsemisimple a category a block is by the size and structure of its so-called 'defect group'. All these concepts are made explicit for the example of the special linear group of two-by-two matrices over a finite prime field. Although the presentation is strongly biased towards the module theoretic point of view an attempt is made to strike a certain balance by also showing the reader the group theoretic approach. In particular, in the case of defect groups a detailed proof of the equivalence of the two approaches is given. This book aims to familiarize students at the masters level with the basic results, tools, and techniques of a beautiful and important algebraic theory. Some basic algebra together with the semisimple case are assumed to be known, although all facts to be used are restated (without proofs) in the text. Otherwise the book is entirely self-contained.

Lie Groups, Lie Algebras, and Representations

Lie Groups, Lie Algebras, and Representations PDF Author: Brian Hall
Publisher: Springer
ISBN: 3319134671
Category : Mathematics
Languages : en
Pages : 452

Book Description
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette

Representing Finite Groups

Representing Finite Groups PDF Author: Ambar N. Sengupta
Publisher: Springer Science & Business Media
ISBN: 1461412315
Category : Mathematics
Languages : en
Pages : 383

Book Description
This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of general and powerful tools based on the notion of semisimplicity. The elegant ideas of commutant duality are introduced, along with an introduction to representations of unitary groups. The text progresses systematically and the presentation is friendly and inviting. Central concepts are revisited and explored from multiple viewpoints. Exercises at the end of the chapter help reinforce the material. Representing Finite Groups: A Semisimple Introduction would serve as a textbook for graduate and some advanced undergraduate courses in mathematics. Prerequisites include acquaintance with elementary group theory and some familiarity with rings and modules. A final chapter presents a self-contained account of notions and results in algebra that are used. Researchers in mathematics and mathematical physics will also find this book useful. A separate solutions manual is available for instructors.