The Synthesis, Characterization and Reactivity of Novel Late-transition Metal Bridging Amido and Imido Complexes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Synthesis, Characterization and Reactivity of Novel Late-transition Metal Bridging Amido and Imido Complexes PDF full book. Access full book title The Synthesis, Characterization and Reactivity of Novel Late-transition Metal Bridging Amido and Imido Complexes by Manoj K. Kolel-Veetil. Download full books in PDF and EPUB format.

The Synthesis, Characterization and Reactivity of Novel Late-transition Metal Bridging Amido and Imido Complexes

The Synthesis, Characterization and Reactivity of Novel Late-transition Metal Bridging Amido and Imido Complexes PDF Author: Manoj K. Kolel-Veetil
Publisher:
ISBN:
Category : Metal complexes
Languages : en
Pages : 470

Book Description


The Synthesis, Characterization and Reactivity of Novel Late-transition Metal Bridging Amido and Imido Complexes

The Synthesis, Characterization and Reactivity of Novel Late-transition Metal Bridging Amido and Imido Complexes PDF Author: Manoj K. Kolel-Veetil
Publisher:
ISBN:
Category : Metal complexes
Languages : en
Pages : 470

Book Description


Synthesis, Characterization, and Reactivity Evaluation of Late Transition Metal-Aluminum Heterobimetallic Complexes Toward Molecular Hydrogen

Synthesis, Characterization, and Reactivity Evaluation of Late Transition Metal-Aluminum Heterobimetallic Complexes Toward Molecular Hydrogen PDF Author: Roland Malcolm Charles III
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The investigation and development of heterobimetallic systems has seen a meteoric surge over the past decade. Generally, these heterobimetallic systems involve two transition metals with distinct properties used together to activate chemical bonds. Many heterobimetallics consist of a soft, low-valent metal and a harder, high-valent metal. The unique electronics afforded by heterobimetallics of this sort can be exploited, yielding access to novel reactivities that may be otherwise inaccessible to a single transition metal. Less studied are heterobimetallic complexes composed of one late transition metal (LTM) and one Lewis-acidic p-block (Group 13) metal. Due to its electropositivity being the highest among Group 13 metals as well as its high earth-abundance, aluminum holds particular interest to the Brewster laboratory. In contrast to their exhaustively investigated boron analogues, the field of aluminum-containing heterobimetallics is relatively uncultivated due to the high reactivity and synthetic difficulty of aluminum species, making isolation and characterization quite challenging. One of the aims of the Brewster lab is to develop heterobimetallic systems comprised of an electron-rich, low-valent transition metal and aluminum to investigate potential synergistic reactivity between both metal centers. In this dissertation, I report the successful synthesis and electronic characterization of myriad novel mono- and heterobimetallic complexes of either iridium or rhodium and aluminumover 35 new complexes in total. Moreover, I detail the ability of selected heterobimetallic complexes to facilitate activation of molecular hydrogen as well as hydrogenolysis, thereby generating alkane gas..

Synthesis, Characterization, and Reactivity of Transition Metal Complexes Containing Multi-donor Ligands

Synthesis, Characterization, and Reactivity of Transition Metal Complexes Containing Multi-donor Ligands PDF Author: John C. Linehan
Publisher:
ISBN:
Category :
Languages : en
Pages : 514

Book Description


Synthesis, Characterization and Reactivity of Heterobimetallic Transition Metal Complexes

Synthesis, Characterization and Reactivity of Heterobimetallic Transition Metal Complexes PDF Author: David Morris Hamilton
Publisher:
ISBN:
Category :
Languages : en
Pages : 206

Book Description


Preparation, Characterisation and Reactivity of Low Oxidation State d-Block Metal Complexes Stabilised by Extremely Bulky Amide Ligands

Preparation, Characterisation and Reactivity of Low Oxidation State d-Block Metal Complexes Stabilised by Extremely Bulky Amide Ligands PDF Author: Jamie Hicks
Publisher: Springer
ISBN: 9811029059
Category : Science
Languages : en
Pages : 214

Book Description
This thesis describes the synthesis and characterization of numerous metal-metal bonded complexes that are stabilized by extremely bulky amide ligands. It provides a comprehensive overview of the field, including discussions on groundbreaking complexes and reactions, before presenting in detail, exciting new findings from the PhD studies. The thesis appeals to researchers, professors and chemistry undergraduates with an interest in inorganic and/or organometallic chemistry.

Direct Synthesis of Metal Complexes

Direct Synthesis of Metal Complexes PDF Author: B.I. Kharisov
Publisher: Elsevier
ISBN: 0128110627
Category : Science
Languages : en
Pages : 470

Book Description
Direct Synthesis of Metal Complexes provides in-depth coverage of the direct synthesis of coordination and organometallic compounds. The work is primarily organized by methods, but also covers highly relevant complexes, such as metal-polymer coordination compounds. This updated reference discusses recent developments in cryosynthesis, electrosynthesis, and tribosynthesis (popular as it doesn’t require organic solvents), with special attention paid to ‘greener’ methodologies and approaches. Additionally, the book describes physical methods of zero-valent metal interaction with organic matter, including sputtering, ultrasonic treatment and synthesis in ionic liquids. The book presents completely new content as a follow-up to the 1999 Elsevier Science publication Direct Synthesis of Coordination and Organometallic Compounds that was edited by Dr. Garnovskii and Dr. Kharisov. Covers current methods and techniques of metal interactions with organic media leading to metal chelates, adducts, di- and polymetallic complexes, metal-containing macrocycles, supported coordination compounds (i.e., metal complexes on carbon nanotubes), and more Describes reactivities of distinct forms of elemental metals (powders, sheets, nanoparticles (including a host of less-common metal nanostructures) with organic phase (liquid, solid and gaseous) and water Includes experimental procedures, with examples of direct synthesis, at the end of each chapter

Synthesis, Characterization and Reactivity of Electron Rich Transition Metal Organometallic Complexes

Synthesis, Characterization and Reactivity of Electron Rich Transition Metal Organometallic Complexes PDF Author: James Joseph Welter
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Pentadienyl and Isoprenyl Transition Metal Complexes

Pentadienyl and Isoprenyl Transition Metal Complexes PDF Author: Thomas Edward Waldman
Publisher:
ISBN:
Category : Transition metal complexes
Languages : en
Pages : 512

Book Description


Synthesis, Characterization and Reactivity Studies of Low-coordinate Late Transition Metal Complexes and the Preparation and Characterization of a Low-coordinate Samarium Complex

Synthesis, Characterization and Reactivity Studies of Low-coordinate Late Transition Metal Complexes and the Preparation and Characterization of a Low-coordinate Samarium Complex PDF Author: Pei Zhao
Publisher:
ISBN: 9781339544052
Category :
Languages : en
Pages :

Book Description
This dissertation focuses on the synthesis, characterization and reactivity study of terphenyl ligand stabilized bis([mu]-oxo) dimeric iron and cobalt complexes. The synthesis and characterization of low-coordinate cobalt alkyl and iron alkyl complexes are also described. In addition, it describes the preparation of the first monomeric homoleptic solvent-free bis(aryloxide) lanthanide complex. The solid state structures of new compounds were determined by single crystal X-ray crystallography. Magnetic properties of paramagnetic compounds were measured by superconducting quantum interference device (SQUID) or Evans' methods for solid state or solution phase, respectively. The new compounds were also characterized by UV-Visible spectroscopy. Furthermore, infrared spectroscopy, Mössbauer spectroscopy, electron paramagnetic resonance spectroscopy, mass spectrometry, cyclic voltammetry and elemental analysis were employed to characterize some of the compounds when applicable. In some cases, DFT calculations were applied to elucidate the bonding and energy levels of molecular orbitals in the complexes. In Chapter 2, The bis([mu]-oxo) dimeric complexes {Ar[superscript iPr8]OM([mu]-O)}2 (Ar [superscript iPr8] = -C6H-2,6-(C6H2-2,4,6-[superscript i]Pr3)2-3,5-[superscript i]Pr2; M = Fe or Co) were prepared by oxidation of the metal (I) half-sandwich complexes {Ar[superscript iPr8]M([eta]6-arene)} (arene = benzene or toluene; M = Fe or Co). The iron species {Ar[superscript iPr8]OFe([mu]-O)}2 was prepared by reacting {Ar[superscript iPr8]Fe([eta]6-benzene)} with N2O or O2 and the cobalt species {Ar[superscript iPr8]OCo([mu]-O)}2 was prepared by reacting {Ar[superscript iPr8]Co([eta]6-toluene)} with O2. Both {Ar[superscript iPr8]OFe([mu]-O)}2 and {Ar[superscript iPr8]OCo([mu]-O)}2 were characterized by X-ray crystallography, UV-vis spectroscopy, magnetic measurements and, in the case of the iron species, by Mössbauer spectroscopy. The solid-state structures of both compounds reveal unique M2([mu]-O)2 (M = Fe or Co) cores with formally three-coordinate metal ions. The Fe···Fe separation in {Ar[superscript iPr8]OFe([mu]-O)}2 bears a resemblance to that in the Fe2([mu]-O)2 diamond core proposed for the methane monooxygenase intermediate Q. The structural differences between {Ar[superscript iPr8]OFe([mu]-O)}2 and {Ar[superscript iPr8]OCo([mu]-O)}2 are reflected in rather differing magnetic behavior. Compound {Ar[superscript iPr8]OCo([mu]-O)}2 is thermally unstable and its decomposition at room temperature resulted in the oxidation of the Ar[superscript iPr8] ligand via oxygen insertion and addition to the central aryl ring of the terphenyl ligand to produce the 5,5'-peroxy-bis[4,6-[superscript i]Pr2-3,7-bis(2,4,6-iPr3-phenyl)oxepin-2(5H)-one]. The structure of the oxidized terphenyl species is closely related to that of a key intermediate proposed for the oxidation of benzene. In Chapter 3, the homoleptic, cobalt(I) alkyl [Co{C(SiMe2Ph)3}]2 was prepared by reacting CoCl2 with [Li{C(SiMe2Ph)3}(THF)] in a 1:2 ratio though the initial intent was to synthesize a dialkyl cobalt (II) complex. Attempts to synthesize the corresponding iron(I) species led to the iron(II) salt [Li(THF)4][Fe2([mu]-Cl)3{C(SiMe2Ph)3}2]. Both complexes were characterized by X-ray crystallography, UV-vis spectroscopy, and magnetic measurements. The structure of [Co{C(SiMe2Ph)3}]2 consists of dimeric units in which each cobalt(I) ion is [sigma]-bonded to the central carbon of the alkyl group -C(SiMe2Ph)3 and [pi]-bonded to one of the phenyl rings of the -C(SiMe2Ph)3 ligand attached to the other cobalt(I) ion in the dimer. The structure of [Li(THF)4][Fe2([mu]-Cl)3{C(SiMe2Ph)3}2] features three chlorides bridging two iron(II) ions. Each iron (II) ion is also [sigma]-bonded to the central carbon of a terminal -C(SiMe2Ph)3 anionic ligand. The magnetic properties of [Co{C(SiMe2Ph)3}]2 reveal the presence of two independent cobalt (I) ions with S = 1 and a significant zero-field splitting of D = 38.0(2) cm−1. The magnetic properties of [Li(THF)4][Fe2([mu]-Cl)3{C(SiMe2Ph)3}2] reveal extensive antiferromagnetic exchange coupling with J = -149(4) cm−1 and a large second-order Zeeman contribution to its molar magnetic susceptibility. Formation of the alkyl [Co{C(SiMe2Ph)3}]2 and the halide complex [Li(THF)4][Fe2([mu]-Cl)3{C(SiMe2Ph)3}2] under similar conditions is probably due to the fact that Co(II) is more readily reduced than Fe(II). Some other synthetic routes were also attempted to synthesize a dialkyl cobalt (II) complex and they are described in this chapter. Neither [Co(NPh2)2]2 nor cobaltocene reacts with [Li{C(SiMe2Ph)3}(THF)] to afford a dialkyl cobalt (II) complex. Metathesis reactions of cobalt halides with lithium salts of alkyl ligand HCPh2R (R = -Ph or -SiMe3) resulted in the reduction of cobalt (II) to cobalt metal and the coupling of ligands, which indicate that homolytic cleavage of the cobalt-carbon bond was probably involved in the metathesis reactions. Furthermore, in chapter 4, reaction of Sm[N(SiMe3)2]2(THF)2 with two equivalents of bulky aryloxide ligand HOAr[superscript iPr6] (Ar[superscript iPr6] = -C6H3-2,6-(C6H2-2,4,6-[superscript i]Pr3)2) afforded the first monomeric homoleptic solvent-free bis(aryloxide) lanthanide complex Sm(OAr[superscript iPr6])2. The complex was characterized by crystallography, UV-Visible spectrum, IR and magnetically by the Evans' method. The O-Sm-O angle is bent at 111.08(9)̊. The samarium ion in Sm(OAr[superscript iPr6])2 also shows weak interactions with the flanking aryl rings of the terphenyloxide ligands. The complex is paramagnetic at room temperature with magnetic moment of 3.51 [mu]B.

Synthesis and Reactivity of Early Transitional Metal Complexes Supported by Sterically Demanding Amido Ligands

Synthesis and Reactivity of Early Transitional Metal Complexes Supported by Sterically Demanding Amido Ligands PDF Author: Marc John Andrew Johnson
Publisher:
ISBN:
Category :
Languages : en
Pages : 480

Book Description