Author: Stefano Boccaletti
Publisher: Elsevier
ISBN: 0080560423
Category : Science
Languages : en
Pages : 259
Book Description
The origin of the word synchronization is a greek root, meaning "to share the common time". The original meaning of synchronization has been maintained up to now in the colloquial use of this word, as agreement or correlation in time of different processes. Historically, the analysis of synchronization phenomena in the evolution of dynamical systems has been a subject of active investigation since the earlier days of physics. Recently, the search for synchronization has moved to chaotic systems. In this latter framework, the appearance of collective (synchronized) dynamics is, in general, not trivial. Indeed, a dynamical system is called chaotic whenever its evolution sensitively depends on the initial conditions. The above said implies that two trajectories emerging from two different closeby initial conditions separate exponentially in the course of the time. As a result, chaotic systems intrinsically defy synchronization, because even two identical systems starting from slightly different initial conditions would evolve in time in a unsynchronized manner (the differences in the systems' states would grow exponentially). This is a relevant practical problem, insofar as experimental initial conditions are never known perfectly. The setting of some collective (synchronized) behavior in coupled chaotic systems has therefore a great importance and interest.The subject of the present book is to summarize the recent discoveries involving the study of synchronization in coupled chaotic systems.Not always the word synchronization is taken as having the same colloquial meaning, and one needs to specify what synchrony means in all particular contexts in which we will describe its emergence.The book describes the complete synchronization phenomenon, both for low and for high dimensional situations, and illustrates possible applications in the field of communicating with chaos.Furthermore, the book summarizes the concepts of phase synchronization, lag synchronization, imperfect phase synchronization, and generalized synchronization, describing a general transition scenario between a hierarchy of different types of synchronization for chaotic oscillators.These concepts are extended to the case of structurally different systems, of uncoupled systems subjected to a common external source, of space extended nonlinearly evolving fields, and of dynamical units networking via a complex wiring of connections, giving thus a summary of all possible situations that are encountered in real life and in technology. - Technical, but not specialistic language - About 100 illustrative Figures - Full overview on synchronization phenomena - Review of the main tools and techniques used in the field - Paradigmatic examples and experiments illustrating the basic concepts - Full Reference to the main publications existing in the literature on the subject
The Synchronized Dynamics of Complex Systems
Author: Stefano Boccaletti
Publisher: Elsevier
ISBN: 0080560423
Category : Science
Languages : en
Pages : 259
Book Description
The origin of the word synchronization is a greek root, meaning "to share the common time". The original meaning of synchronization has been maintained up to now in the colloquial use of this word, as agreement or correlation in time of different processes. Historically, the analysis of synchronization phenomena in the evolution of dynamical systems has been a subject of active investigation since the earlier days of physics. Recently, the search for synchronization has moved to chaotic systems. In this latter framework, the appearance of collective (synchronized) dynamics is, in general, not trivial. Indeed, a dynamical system is called chaotic whenever its evolution sensitively depends on the initial conditions. The above said implies that two trajectories emerging from two different closeby initial conditions separate exponentially in the course of the time. As a result, chaotic systems intrinsically defy synchronization, because even two identical systems starting from slightly different initial conditions would evolve in time in a unsynchronized manner (the differences in the systems' states would grow exponentially). This is a relevant practical problem, insofar as experimental initial conditions are never known perfectly. The setting of some collective (synchronized) behavior in coupled chaotic systems has therefore a great importance and interest.The subject of the present book is to summarize the recent discoveries involving the study of synchronization in coupled chaotic systems.Not always the word synchronization is taken as having the same colloquial meaning, and one needs to specify what synchrony means in all particular contexts in which we will describe its emergence.The book describes the complete synchronization phenomenon, both for low and for high dimensional situations, and illustrates possible applications in the field of communicating with chaos.Furthermore, the book summarizes the concepts of phase synchronization, lag synchronization, imperfect phase synchronization, and generalized synchronization, describing a general transition scenario between a hierarchy of different types of synchronization for chaotic oscillators.These concepts are extended to the case of structurally different systems, of uncoupled systems subjected to a common external source, of space extended nonlinearly evolving fields, and of dynamical units networking via a complex wiring of connections, giving thus a summary of all possible situations that are encountered in real life and in technology. - Technical, but not specialistic language - About 100 illustrative Figures - Full overview on synchronization phenomena - Review of the main tools and techniques used in the field - Paradigmatic examples and experiments illustrating the basic concepts - Full Reference to the main publications existing in the literature on the subject
Publisher: Elsevier
ISBN: 0080560423
Category : Science
Languages : en
Pages : 259
Book Description
The origin of the word synchronization is a greek root, meaning "to share the common time". The original meaning of synchronization has been maintained up to now in the colloquial use of this word, as agreement or correlation in time of different processes. Historically, the analysis of synchronization phenomena in the evolution of dynamical systems has been a subject of active investigation since the earlier days of physics. Recently, the search for synchronization has moved to chaotic systems. In this latter framework, the appearance of collective (synchronized) dynamics is, in general, not trivial. Indeed, a dynamical system is called chaotic whenever its evolution sensitively depends on the initial conditions. The above said implies that two trajectories emerging from two different closeby initial conditions separate exponentially in the course of the time. As a result, chaotic systems intrinsically defy synchronization, because even two identical systems starting from slightly different initial conditions would evolve in time in a unsynchronized manner (the differences in the systems' states would grow exponentially). This is a relevant practical problem, insofar as experimental initial conditions are never known perfectly. The setting of some collective (synchronized) behavior in coupled chaotic systems has therefore a great importance and interest.The subject of the present book is to summarize the recent discoveries involving the study of synchronization in coupled chaotic systems.Not always the word synchronization is taken as having the same colloquial meaning, and one needs to specify what synchrony means in all particular contexts in which we will describe its emergence.The book describes the complete synchronization phenomenon, both for low and for high dimensional situations, and illustrates possible applications in the field of communicating with chaos.Furthermore, the book summarizes the concepts of phase synchronization, lag synchronization, imperfect phase synchronization, and generalized synchronization, describing a general transition scenario between a hierarchy of different types of synchronization for chaotic oscillators.These concepts are extended to the case of structurally different systems, of uncoupled systems subjected to a common external source, of space extended nonlinearly evolving fields, and of dynamical units networking via a complex wiring of connections, giving thus a summary of all possible situations that are encountered in real life and in technology. - Technical, but not specialistic language - About 100 illustrative Figures - Full overview on synchronization phenomena - Review of the main tools and techniques used in the field - Paradigmatic examples and experiments illustrating the basic concepts - Full Reference to the main publications existing in the literature on the subject
Geometrical Dynamics of Complex Systems
Author: Vladimir G. Ivancevic
Publisher: Springer Science & Business Media
ISBN: 140204545X
Category : Science
Languages : en
Pages : 842
Book Description
Geometrical Dynamics of Complex Systems is a graduate?level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By?complexsystems?,inthis book are meant high?dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds:engineering,physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi?input multi?output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular ?soft complexity philosophy?, we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high?dimensional nonlinear systems and processes of ?real life? can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well?known that linear systems, which are completely predictable and controllable by de?nition ? live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.
Publisher: Springer Science & Business Media
ISBN: 140204545X
Category : Science
Languages : en
Pages : 842
Book Description
Geometrical Dynamics of Complex Systems is a graduate?level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By?complexsystems?,inthis book are meant high?dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds:engineering,physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi?input multi?output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular ?soft complexity philosophy?, we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high?dimensional nonlinear systems and processes of ?real life? can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well?known that linear systems, which are completely predictable and controllable by de?nition ? live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.
Synchronization
Author: Stefano Boccaletti
Publisher: Cambridge University Press
ISBN: 1107056268
Category : Mathematics
Languages : en
Pages : 267
Book Description
A modern introduction to synchronization phenomena, combining the development of deep mathematical concepts with illustrative examples and practical applications.
Publisher: Cambridge University Press
ISBN: 1107056268
Category : Mathematics
Languages : en
Pages : 267
Book Description
A modern introduction to synchronization phenomena, combining the development of deep mathematical concepts with illustrative examples and practical applications.
Complex Systems
Author: Albert C. J. Luo
Publisher: Springer Science & Business Media
ISBN: 3642175937
Category : Science
Languages : en
Pages : 381
Book Description
"Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.
Publisher: Springer Science & Business Media
ISBN: 3642175937
Category : Science
Languages : en
Pages : 381
Book Description
"Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.
Modelling, Estimation and Control of Networked Complex Systems
Author: Alessandro Chiuso
Publisher: Springer
ISBN: 3642031994
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
The paradigm of complexity is pervading both science and engineering, le- ing to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the de?nition of powerful tools for modelling, estimation, and control; and the cross-fertilization of di?erent disciplines and approaches. One of the most promising paradigms to cope with complexity is that of networked systems. Complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synch- nization, social and economics events, networks of critical infrastructures, resourcesallocation,informationprocessing,controlovercommunicationn- works, etc. Advances in this ?eld are highlighting approaches that are more and more oftenbasedondynamicalandtime-varyingnetworks,i.e.networksconsisting of dynamical nodes with links that can change over time. Moreover, recent technological advances in wireless communication and decreasing cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile ca- bilities. This is fostering the development of many engineering applications, which exploit the availability of these systems of systems to monitor and control very large-scale phenomena with ?ne resolution.
Publisher: Springer
ISBN: 3642031994
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
The paradigm of complexity is pervading both science and engineering, le- ing to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the de?nition of powerful tools for modelling, estimation, and control; and the cross-fertilization of di?erent disciplines and approaches. One of the most promising paradigms to cope with complexity is that of networked systems. Complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synch- nization, social and economics events, networks of critical infrastructures, resourcesallocation,informationprocessing,controlovercommunicationn- works, etc. Advances in this ?eld are highlighting approaches that are more and more oftenbasedondynamicalandtime-varyingnetworks,i.e.networksconsisting of dynamical nodes with links that can change over time. Moreover, recent technological advances in wireless communication and decreasing cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile ca- bilities. This is fostering the development of many engineering applications, which exploit the availability of these systems of systems to monitor and control very large-scale phenomena with ?ne resolution.
General System Theory: Perspectives in Philosophy and Approaches in Complex Systems
Author: Gianfranco Minati
Publisher: MDPI
ISBN: 3038424404
Category : Mathematics
Languages : en
Pages : 221
Book Description
This book is a printed edition of the Special Issue "Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems" that was published in Systems
Publisher: MDPI
ISBN: 3038424404
Category : Mathematics
Languages : en
Pages : 221
Book Description
This book is a printed edition of the Special Issue "Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems" that was published in Systems
Synchronization
Author: Stefano Boccaletti
Publisher: Cambridge University Press
ISBN: 1108651305
Category : Science
Languages : en
Pages : 267
Book Description
A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate students and researchers gain an organic and complete understanding of the subject.
Publisher: Cambridge University Press
ISBN: 1108651305
Category : Science
Languages : en
Pages : 267
Book Description
A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate students and researchers gain an organic and complete understanding of the subject.
Selforganization in Complex Systems: The Past, Present, and Future of Synergetics
Author: Günter Wunner
Publisher: Springer
ISBN: 3319276352
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
This proceedings volume contains talks and poster presentations from the International Symposium "Self-Organization in Complex Systems: The Past, Present, and Future of Synergetics", which took place at Hanse-Wissenschaftskolleg, an Institute of Advanced Studies, in Delmenhorst, Germany, during the period November 13 - 16, 2012. The Symposium was organized in honour of Hermann Haken, who celebrated his 85th birthday in 2012. With his fundamental theory of Synergetics he had laid the mathematical-physical basis for describing and analyzing self-organization processes in a diversity of fields of research. The quest for common and universal principles of self-organization in complex systems was clearly covered by the wide range of interdisciplinary topics reported during the Symposium. These extended from complexity in classical systems and quantum systems over self-organisation in neuroscience even to the physics of finance. Moreover, by combining a historical view with a present status report the Symposium conveyed an impression of the allure and potency of this branch of research as well as its applicability in the future.
Publisher: Springer
ISBN: 3319276352
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
This proceedings volume contains talks and poster presentations from the International Symposium "Self-Organization in Complex Systems: The Past, Present, and Future of Synergetics", which took place at Hanse-Wissenschaftskolleg, an Institute of Advanced Studies, in Delmenhorst, Germany, during the period November 13 - 16, 2012. The Symposium was organized in honour of Hermann Haken, who celebrated his 85th birthday in 2012. With his fundamental theory of Synergetics he had laid the mathematical-physical basis for describing and analyzing self-organization processes in a diversity of fields of research. The quest for common and universal principles of self-organization in complex systems was clearly covered by the wide range of interdisciplinary topics reported during the Symposium. These extended from complexity in classical systems and quantum systems over self-organisation in neuroscience even to the physics of finance. Moreover, by combining a historical view with a present status report the Symposium conveyed an impression of the allure and potency of this branch of research as well as its applicability in the future.
Emergence Of Dynamical Order: Synchronization Phenomena In Complex Systems
Author: Susanna C Manrubia
Publisher: World Scientific
ISBN: 9814482951
Category : Science
Languages : en
Pages : 359
Book Description
Synchronization processes bring about dynamical order and lead to spontaneous development of structural organization in complex systems of various origins, from chemical oscillators and biological cells to human societies and the brain. This book provides a review and a detailed theoretical analysis of synchronization phenomena in complex systems with different architectures, composed of elements with periodic or chaotic individual dynamics. Special attention is paid to statistical concepts, such as nonequilibrium phase transitions, order parameters and dynamical glasses.
Publisher: World Scientific
ISBN: 9814482951
Category : Science
Languages : en
Pages : 359
Book Description
Synchronization processes bring about dynamical order and lead to spontaneous development of structural organization in complex systems of various origins, from chemical oscillators and biological cells to human societies and the brain. This book provides a review and a detailed theoretical analysis of synchronization phenomena in complex systems with different architectures, composed of elements with periodic or chaotic individual dynamics. Special attention is paid to statistical concepts, such as nonequilibrium phase transitions, order parameters and dynamical glasses.
Dynamical System Synchronization
Author: Albert C. J. Luo
Publisher: Springer Science & Business Media
ISBN: 1461450977
Category : Technology & Engineering
Languages : en
Pages : 245
Book Description
Dynamical System Synchronization (DSS) meticulously presents for the first time the theory of dynamical systems synchronization based on the local singularity theory of discontinuous dynamical systems. The book details the sufficient and necessary conditions for dynamical systems synchronizations, through extensive mathematical expression. Techniques for engineering implementation of DSS are clearly presented compared with the existing techniques.
Publisher: Springer Science & Business Media
ISBN: 1461450977
Category : Technology & Engineering
Languages : en
Pages : 245
Book Description
Dynamical System Synchronization (DSS) meticulously presents for the first time the theory of dynamical systems synchronization based on the local singularity theory of discontinuous dynamical systems. The book details the sufficient and necessary conditions for dynamical systems synchronizations, through extensive mathematical expression. Techniques for engineering implementation of DSS are clearly presented compared with the existing techniques.