The Study of Quantum Materials with the Interplay of Spin-orbit Coupling, Topology and Superconductivity PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Study of Quantum Materials with the Interplay of Spin-orbit Coupling, Topology and Superconductivity PDF full book. Access full book title The Study of Quantum Materials with the Interplay of Spin-orbit Coupling, Topology and Superconductivity by Yingming Xie. Download full books in PDF and EPUB format.

The Study of Quantum Materials with the Interplay of Spin-orbit Coupling, Topology and Superconductivity

The Study of Quantum Materials with the Interplay of Spin-orbit Coupling, Topology and Superconductivity PDF Author: Yingming Xie
Publisher:
ISBN:
Category : Condensed matter
Languages : en
Pages : 150

Book Description


The Study of Quantum Materials with the Interplay of Spin-orbit Coupling, Topology and Superconductivity

The Study of Quantum Materials with the Interplay of Spin-orbit Coupling, Topology and Superconductivity PDF Author: Yingming Xie
Publisher:
ISBN:
Category : Condensed matter
Languages : en
Pages : 150

Book Description


Observation of Novel Phases of Quantum Matter Beyond Topological Insulator

Observation of Novel Phases of Quantum Matter Beyond Topological Insulator PDF Author: Sabin Regmi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Because of the unique electronic properties, intriguing novel phenomena, and potentiality in quantum device applications, the quantum materials with non-trivial band structures have enticed a bulk of research works over the last two decades. The experimental discovery of the three-dimensional topological insulators (TIs) - bulk insulators with surface conduction via spin-polarized electrons - kicked off the flurry of research interests towards such materials, which resulted in the experimental discovery of new topological phases of matter beyond TIs. The topological semimetallic phase in Dirac, Weyl, and nodal-line semimetals is an example, where the classification depends on the dimensionality, degeneracy, and symmetry protection of the bulk band touching. The field of topology has extended to the materials that possess non-trivial topological states at/along lower-dimensional regions of the crystals as well. A class of such materials is the higher-order topological insulator in which both bulk and surface are insulating, but symmetry-protected conducting channels can appear along the hinges or corners of the crystal. Recently, significant focus has been given to the study of the interplay among various physical parameters such as topology, geometry, magnetism, and electronic correlation. Kagome systems have emerged as fertile ground to study the interaction among such parameters in a material class. Charge density wave (CDW) order in quantum materials remains an important topic of study given its co-existence or competence with superconductivity and magnetic ordering. In this dissertation, we study the electronic structure of quantum material systems beyond TIs, particularly the lanthanide element-based and correlated systems, by utilizing state-of-art angle-resolved photoemission spectroscopy with collaborative support from first-principles calculations and transport and magnetic measurements. The lanthanide-based materials are interesting because of the possible magnetic ordering and electron correlations that the lanthanide 4f electrons may bring into the table. Our work on the Europium-based antiferromagnetic material EuIn2As2 highlights this material as a promising ground to study the interplay of different kinds of topological orders including higher-order topology with magnetism. Temperature-dependent measurements reveal a band splitting near the Fermi level below the antiferromagnetic transition. Another study on the samarium- and neodymium-based materials SmSbTe and NdSbTe shows the presence of multiple nodal lines that remain gapless even in the presence of spin-orbit coupling. We also studied a van der Waals kagome semiconductor Nb3I8, where we observed flat and weakly dispersing bands in its electronic structure. These bands are observed to be sensitive to light polarization and originate from the breathing kagome plane of niobium atoms. Next, our study in Gadolinium-based van der Waals material GdTe3 shows the presence of a momentum-dependent CDW gap and the presence of antiferromagnetic ordering that could prove important to study the interaction of CDW and magnetic orders in this material. Overall, the works under this dissertation reveal the electronic properties in correlated systems that range from insulator to metals/semimetals and from topological insulator to topological semimetals, kagome semiconductor, and CDW material.

Topological Quantum Materials

Topological Quantum Materials PDF Author: Grigory Tkachov
Publisher: CRC Press
ISBN: 1000544001
Category : Science
Languages : en
Pages : 288

Book Description
In topological quantum materials, quantum effects emerge at macroscopic scales and are robust to continuous changes in a material’s state. This striking synergy between quantum and topological properties is of great interest for both fundamental research and emerging technologies, especially in the fields of electronics and quantum information. This edition of the book presents a wealth of topological quantum materials, bringing together burgeoning research from different areas: topological insulators, transition metal dichalcogenides, Weyl semimetals, and unconventional and topological superconductors. The realization of the application potential of topological quantum materials requires understanding their properties at a fundamental level. This brings us back to the discovery of topological phases of matter, which earned the Nobel Prize in Physics in 2016. This book explores the connection between pioneering work on topological phases of matter and a flurry of activity that followed. The topics covered include the quantum anomalous and spin Hall effects, emergent axion electrodynamics and topological magnetoelectric effects, Weyl nodes and surface Fermi arcs, weak antilocalization, induced triplet superconductivity, Majorana fermion modes, and the fractional Josephson effect.

Theory of Multipole Fluctuation Mediated Superconductivity and Multipole Phase

Theory of Multipole Fluctuation Mediated Superconductivity and Multipole Phase PDF Author: Rina Tazai
Publisher: Springer Nature
ISBN: 9811610266
Category : Science
Languages : en
Pages : 128

Book Description
A strong spin-orbit interaction and Coulomb repulsion featuring strongly correlated d- and f-electron systems lead to various exotic phase transition including unconventional superconductivity and magnetic multipole order. However, their microscopic origins are long standing problem since they could not be explained based on conventional Migdal-Eliashberg theorem. The book focuses on many-body correlation effects beyond conventional theory for the d- and f-electron systems, and theoretically demonstrates the correlations to play significant roles in “mode-coupling” among multiple quantum fluctuations, which is called U-VC here. The following key findings are described in-depth: (i) spin triplet superconductivity caused by U-VC, (ii) being more important U-VC in f-electron systems due to magnetic multipole degrees of freedom induced by a spin-orbit interaction, and (iii) s-wave superconductivity stabilized cooperatively by antiferromagnetic fluctuations and electron-phonon interaction contrary to conventional understanding. The book provides meaningful step for revealing essential roles of many-body effects behind long standing problems in strongly correlated materials.

Excursions in Ill-Condensed Quantum Matter

Excursions in Ill-Condensed Quantum Matter PDF Author: Adhip Agarwala
Publisher: Springer
ISBN: 3030215113
Category : Science
Languages : en
Pages : 163

Book Description
Impurities, disorder or amorphous systems – ill-condensed matter – are mostly considered inconveniences in the study of materials, which is otherwise heavily based on idealized perfect crystals. The Kondo effect and the scaling theory of localization are among the fundamental and early discoveries which revealed the novelty hidden in impure or disordered systems. Recent advances in condensed matter physics have emphasized the role of topology, spin-orbit coupling, and certain discrete symmetries such as time reversal in many physical phenomena. These have irreversibly transformed the essential ideas and purview of condensed matter physics, both in theoretical and experimental directions. However, many of these recent developments and their implications are limited to, or by, ideas that pertain to clean systems. This thesis deals with various aspects of these new developments, but in the case of unclean systems. The author introduces new ideas such as amorphous topological insulators, fractalized metals and fractionalized spins.

Superconductivity, Correlation, and Topology in Atomic-thin Quantum Materials

Superconductivity, Correlation, and Topology in Atomic-thin Quantum Materials PDF Author: Mengke Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Atomic thin quantum materials that host exotic quantum phases such as unconventional superconductivity, correlated magnetic insulating, and quantum anomalous Hall insulating states have become a new research frontier due to their intriguing physical phenomena and potential applications that may revolutionize human life. Atomic-thin quantum materials reduce the dimensionality into two, which leads to many unique properties. For example, monolayer or bilayer thin films reduce interlayer coupling compared with their 3D bulk counterparts, thus disentangling the interlayer interaction from interlayer interaction; weakened Coulomb screening at the 2D limit enhances the electron correlations; increased phase fluctuations of the order parameter make it possible for studying quasi-long range order, and quantum confinement from the third dimension may introduce quantum size effect. Thanks to the advancement of material engineering techniques, synthesis or separation of atomic thin quantum materials have become possible and popular. Among these techniques, such as molecular beam epitaxy, physical/chemical vapor deposition, and mechanical exfoliationmolecular beam epitaxy is very powerful due to its precise control of layer thickness and cleanness across a macroscopic wafer scale. Combining molecular beam epitaxy with other in-situ characterization techniques such as scanning tunneling microscopy and double-coil mutual inductance system allows us to design, control, and characterize the atomic thin quantum materials in both microscopic and macroscopic length scales. Here in this dissertation, I first briefly introduce the background motivations of the atomic thin quantum materials in the first chapter. In the second chapter, I cover the research techniques that have been employed during my graduate studies such as molecular beam epitaxy, scanning tunneling microscopy, and double-coil mutual inductance system. The third chapter is devoted to superconductivity in the 2D limit, I use monolayer indium thin film as a platform to discuss how the geometric arrangement of a monolayer indium thin-film affects the superconductivity transition temperature and superfluid density. In the fourth chapter, I use monolayer 1T phase NbSe2 as a material example to discuss the manifestation of strong electron correlation and how it leads to magnetic charge-transfer insulators in its charge density wave phase. I also discuss the interplay of local magnetic moments with metallic/superconducting states, which lead to Kondo resonances and Yu-Shiba-Rusinov-like bound states. The fifth chapter focuses on the concept of band topology and its accompanied surface states. I use intrinsic magnetic topological insulator MnBi2Te4 as a material platform to discuss the interplay of the Dirac mass gap with magnetism and its theoretical understanding. Finally, I make some concluding remarks, including so far confronted obstacles in these topics, and comment on the further steps to make for future advancement

Understanding Properties of Atoms, Molecules and Materials

Understanding Properties of Atoms, Molecules and Materials PDF Author: Pranab Sarkar
Publisher: CRC Press
ISBN: 1000504433
Category : Science
Languages : en
Pages : 433

Book Description
In a technology driven civilization the quest for new and smarter materials is everlasting. They are required as platforms for developing new technologies or for improving an already existing technology. The discovery of a new material is no longer chance driven or accidental, but is based on careful reasoning structured by deep understanding of the microconstituents of materials - the atoms and molecules in isolation or in an assembly. That requires fair amount of exposure to quantum and statistical mechanics. `Understanding Properties of Atoms, Molecules and Materials' is an effort (perhaps the first ever) to bring all the necessary theoretical ingredients and relevant physical information in a single volume. The book introduces the readers (first year graduates) or researchers in material chemistry/engineering to elementary quantum mechanics of atoms, molecules and solids and then goes on to make them acquainted with methods of statistical mechanics (classical as well as quantum) along with elementary principles of classical MD simulation. The basic concepts are introduced with clarity and illustrated with easy to grasp examples, thus preparing the readers for an exploration through the world of materials - the exotic and the mundane. The emphasis has been on the phenomena and what shapes them at the fundamental level. A comprehensive description of modern designing principles for materials with examples is a unique feature of the book. The highlights of the book are comprehensive introduction and analysis of Quantum states of atoms and molecules The translational symmetry and quantum states in periodic and amorphous solids Band structure and tuning Classical and quantum statistics with applications to ideal gases (photons, phonons and electrons, molecules) Quantum states in type-I and type-II superconductors (elementary theory included) Magnetic materials, materials with GMR and CMR Shape memory effects in alloys and materials 2D materials (graphene and graphene analogus) NLO and photovoltaic materials Hydrogen storage material for mitigating the looming energy crisis Quantum states in low and high band gap semiconductors Semimetals Designer materials, etc. The volume is designed and organized to create interest in the science of materials and the silent revolution that is redefining the goals and boundaries of materials science continuously.

Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors PDF Author: B. Andrei Bernevig
Publisher: Princeton University Press
ISBN: 1400846730
Category : Science
Languages : en
Pages : 264

Book Description
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Topological Insulators

Topological Insulators PDF Author: Frank Ortmann
Publisher: John Wiley & Sons
ISBN: 3527681604
Category : Technology & Engineering
Languages : en
Pages : 434

Book Description
There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic states, the Dirac point, quantum Hall effects and Majorana fermions are illuminated in individual chapters and are described in a clear and logical form. Written by an international team of experts, many of them directly involved in the very first discovery of topological insulators, the book provides the readers with the knowledge they need to understand the electronic behavior of these unique materials. Being more than a reference work, this book is essential for newcomers and advanced researchers working in the field of topological insulators.

Introduction to Unconventional Superconductivity

Introduction to Unconventional Superconductivity PDF Author: V.P. Mineev
Publisher: CRC Press
ISBN: 9789056992095
Category : Science
Languages : en
Pages : 204

Book Description
Unconventional superconductivity (or superconductivity with a nontrivial Cooper pairing) is believed to exist in many heavy-fermion materials as well as in high temperature superconductors, and is a subject of great theoretical and experimental interest. The remarkable progress achieved in this field has not been reflected in published monographs and textbooks, and there is a gap between current research and the standard education of solid state physicists in the theory of superconductivity. This book is intended to meet this information need and includes the authors' original results.