The Statistical Mechanics of Lattice Gases PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Statistical Mechanics of Lattice Gases PDF full book. Access full book title The Statistical Mechanics of Lattice Gases by Barry Simon. Download full books in PDF and EPUB format.

The Statistical Mechanics of Lattice Gases

The Statistical Mechanics of Lattice Gases PDF Author: Barry Simon
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


The Statistical Mechanics of Lattice Gases, Volume I

The Statistical Mechanics of Lattice Gases, Volume I PDF Author: Barry Simon
Publisher: Princeton University Press
ISBN: 1400863430
Category : Science
Languages : en
Pages : 534

Book Description
A state-of-the-art survey of both classical and quantum lattice gas models, this two-volume work will cover the rigorous mathematical studies of such models as the Ising and Heisenberg, an area in which scientists have made enormous strides during the past twenty-five years. This first volume addresses, among many topics, the mathematical background on convexity and Choquet theory, and presents an exhaustive study of the pressure including the Onsager solution of the two-dimensional Ising model, a study of the general theory of states in classical and quantum spin systems, and a study of high and low temperature expansions. The second volume will deal with the Peierls construction, infrared bounds, Lee-Yang theorems, and correlation inequality. This comprehensive work will be a useful reference not only to scientists working in mathematical statistical mechanics but also to those in related disciplines such as probability theory, chemical physics, and quantum field theory. It can also serve as a textbook for advanced graduate students. Originally published in 1993. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

The Statistical Mechanics of Lattice Gases

The Statistical Mechanics of Lattice Gases PDF Author: Barry Simon
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems PDF Author: Sacha Friedli
Publisher: Cambridge University Press
ISBN: 1107184827
Category : Mathematics
Languages : en
Pages : 643

Book Description
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.

Convexity in the Theory of Lattice Gases

Convexity in the Theory of Lattice Gases PDF Author: Robert B. Israel
Publisher: Princeton University Press
ISBN: 1400868424
Category : Science
Languages : en
Pages : 257

Book Description
In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses a version of a theorem by Bishop and Phelps to obtain existence results for phase transitions. Furthermore, he shows how the Gibbs Phase Rule and the existence of a wide variety of phase transitions follow from the general framework and the theory of convex functions. While the behavior of some of these phase transitions is very "pathological," others exhibit more "reasonable" behavior. As an example, the author considers the isotropic Heisenberg model. Formulating a version of the Gibbs Phase Rule using Hausdorff dimension, he shows that the finite dimensional subspaces satisfying this phase rule are generic. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems PDF Author: David Lavis
Publisher: Springer Science & Business Media
ISBN: 3662038439
Category : Science
Languages : en
Pages : 376

Book Description
This two-volume work provides a comprehensive study of the statistical mechanics of lattice models. It introduces readers to the main topics and the theory of phase transitions, building on a firm mathematical and physical basis. Volume 1 contains an account of mean-field and cluster variation methods successfully used in many applications in solid-state physics and theoretical chemistry, as well as an account of exact results for the Ising and six-vertex models and those derivable by transformation methods.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems PDF Author: Sacha Friedli
Publisher: Cambridge University Press
ISBN: 1316886964
Category : Mathematics
Languages : en
Pages : 644

Book Description
This motivating textbook gives a friendly, rigorous introduction to fundamental concepts in equilibrium statistical mechanics, covering a selection of specific models, including the Curie–Weiss and Ising models, the Gaussian free field, O(n) models, and models with Kać interactions. Using classical concepts such as Gibbs measures, pressure, free energy, and entropy, the book exposes the main features of the classical description of large systems in equilibrium, in particular the central problem of phase transitions. It treats such important topics as the Peierls argument, the Dobrushin uniqueness, Mermin–Wagner and Lee–Yang theorems, and develops from scratch such workhorses as correlation inequalities, the cluster expansion, Pirogov–Sinai Theory, and reflection positivity. Written as a self-contained course for advanced undergraduate or beginning graduate students, the detailed explanations, large collection of exercises (with solutions), and appendix of mathematical results and concepts also make it a handy reference for researchers in related areas.

Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems

Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems PDF Author: Jean-René Chazottes
Publisher: Springer Science & Business Media
ISBN: 9783540242895
Category : Science
Languages : en
Pages : 380

Book Description
This book is about the dynamics of coupled map lattices (CML) and of related spatially extended systems. It will be useful to post-graduate students and researchers seeking an overview of the state-of-the-art and of open problems in this area of nonlinear dynamics. The special feature of this book is that it describes the (mathematical) theory of CML and some related systems and their phenomenology, with some examples of CML modeling of concrete systems (from physics and biology). More precisely, the book deals with statistical properties of (weakly) coupled chaotic maps, geometric aspects of (chaotic) CML, monotonic spatially extended systems, and dynamical models of specific biological systems.

Introduction to Mathematical Statistical Physics

Introduction to Mathematical Statistical Physics PDF Author: Robert Adolʹfovich Minlos
Publisher: American Mathematical Soc.
ISBN: 0821813374
Category : Mathematics
Languages : en
Pages : 114

Book Description
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.

Doing Mathematics: Convention, Subject, Calculation, Analogy (2nd Edition)

Doing Mathematics: Convention, Subject, Calculation, Analogy (2nd Edition) PDF Author: Martin H Krieger
Publisher: World Scientific
ISBN: 9814571865
Category : Mathematics
Languages : en
Pages : 492

Book Description
Doing Mathematics discusses some ways mathematicians and mathematical physicists do their work and the subject matters they uncover and fashion. The conventions they adopt, the subject areas they delimit, what they can prove and calculate about the physical world, and the analogies they discover and employ, all depend on the mathematics — what will work out and what won't. The cases studied include the central limit theorem of statistics, the sound of the shape of a drum, the connections between algebra and topology, and the series of rigorous proofs of the stability of matter. The many and varied solutions to the two-dimensional Ising model of ferromagnetism make sense as a whole when they are seen in an analogy developed by Richard Dedekind in the 1880s to algebraicize Riemann's function theory; by Robert Langlands' program in number theory and representation theory; and, by the analogy between one-dimensional quantum mechanics and two-dimensional classical statistical mechanics. In effect, we begin to see 'an identity in a manifold presentation of profiles,' as the phenomenologists would say.This second edition deepens the particular examples; it describe the practical role of mathematical rigor; it suggests what might be a mathematician's philosophy of mathematics; and, it shows how an 'ugly' first proof or derivation embodies essential features, only to be appreciated after many subsequent proofs. Natural scientists and mathematicians trade physical models and abstract objects, remaking them to suit their needs, discovering new roles for them as in the recent case of the Painlevé transcendents, the Tracy-Widom distribution, and Toeplitz determinants. And mathematics has provided the models and analogies, the ordinary language, for describing the everyday world, the structure of cities, or God's infinitude.

Statistical Mechanics of Driven Diffusive Systems

Statistical Mechanics of Driven Diffusive Systems PDF Author:
Publisher: Elsevier
ISBN: 0080538746
Category : Science
Languages : en
Pages : 235

Book Description
Far-from-equilibrium phenomena, while abundant in nature, are not nearly as well understood as their equilibrium counterparts. On the theoretical side, progress is slowed by the lack of a simple framework, such as the Boltzmann-Gbbs paradigm in the case of equilibrium thermodynamics. On the experimental side, the enormous structural complexity of real systems poses serious obstacles to comprehension.Similar difficulties have been overcome in equilibrium statistical mechanics by focusing on model systems. Even if they seem too simplistic for known physical systems, models give us considerable insight, provided they capture the essential physics. They serve as important theoretical testing grounds where the relationship between the generic physical behavior and the key ingredients of a successful theory can be identified and understood in detail.Within the vast realm of non-equilibrium physics, driven diffusive systems form a subset with particularly interesting properties. As a prototype model for these systems, the driven lattice gas was introduced roughly a decade ago. Since then, a number of surprising phenomena have been discovered including singular correlations at generic temperatures, as well as novel phase transitions, universality classes, and interfacial instabilities. This book summarizes current knowledge on driven systems, from apedagogical discussion of the original driven lattice gas to a brief survey of related models. Given that the topic is far from closed, much emphasis is placed on detailing open questions and unsolved problems as an incentive for the reader to pursue thesubject further.Provides a summary of current knowledge on driven diffusive systemsEmphasis is placed on detailing open questions and unsolved problemsCovers the entire subject from original driven lattice gas to a survey of related models