Author: Margaret Sullivan Pepe
Publisher: OUP Oxford
ISBN: 019158861X
Category : Medical
Languages : en
Pages : 319
Book Description
This book describes statistical techniques for the design and evaluation of research studies on medical diagnostic tests, screening tests, biomarkers and new technologies for classification and prediction in medicine.
The Statistical Evaluation of Medical Tests for Classification and Prediction
Author: Margaret Sullivan Pepe
Publisher: OUP Oxford
ISBN: 019158861X
Category : Medical
Languages : en
Pages : 319
Book Description
This book describes statistical techniques for the design and evaluation of research studies on medical diagnostic tests, screening tests, biomarkers and new technologies for classification and prediction in medicine.
Publisher: OUP Oxford
ISBN: 019158861X
Category : Medical
Languages : en
Pages : 319
Book Description
This book describes statistical techniques for the design and evaluation of research studies on medical diagnostic tests, screening tests, biomarkers and new technologies for classification and prediction in medicine.
The Statistical Evaluation of Medical Tests for Classification and Prediction
Author: Margaret Sullivan Pepe
Publisher:
ISBN: 0198509847
Category : Biochemical markers
Languages : en
Pages : 319
Book Description
This book describes statistical concepts and techniques for evaluating medical diagnostic tests and biomarkers for detecting disease. More generally, the techniques pertain to the statistical classification problem for predicting a dichotomous outcome. Measures for quantifying test accuracy are described including sensitivity, specificity, predictive values, diagnostic likelihood ratios and the Receiver Operating Characteristic Curve that is commonly used for continuous and ordinal valued tests. Statistical procedures are presented for estimating and comparing them. Regression frameworks for assessing factors that influence test accuracy and for comparing tests while adjusting for such factors are presented. This book presents many worked examples of real data and should be of interest to practicing statisticians or quantitative researchers involved in the development of tests for classification or prediction in medicine.
Publisher:
ISBN: 0198509847
Category : Biochemical markers
Languages : en
Pages : 319
Book Description
This book describes statistical concepts and techniques for evaluating medical diagnostic tests and biomarkers for detecting disease. More generally, the techniques pertain to the statistical classification problem for predicting a dichotomous outcome. Measures for quantifying test accuracy are described including sensitivity, specificity, predictive values, diagnostic likelihood ratios and the Receiver Operating Characteristic Curve that is commonly used for continuous and ordinal valued tests. Statistical procedures are presented for estimating and comparing them. Regression frameworks for assessing factors that influence test accuracy and for comparing tests while adjusting for such factors are presented. This book presents many worked examples of real data and should be of interest to practicing statisticians or quantitative researchers involved in the development of tests for classification or prediction in medicine.
Statistical Methods in Diagnostic Medicine
Author: Xiao-Hua Zhou
Publisher: John Wiley & Sons
ISBN: 1118626044
Category : Medical
Languages : en
Pages : 597
Book Description
Praise for the First Edition " . . . the book is a valuable addition to the literature in the field, serving as a much-needed guide for both clinicians and advanced students."—Zentralblatt MATH A new edition of the cutting-edge guide to diagnostic tests in medical research In recent years, a considerable amount of research has focused on evolving methods for designing and analyzing diagnostic accuracy studies. Statistical Methods in Diagnostic Medicine, Second Edition continues to provide a comprehensive approach to the topic, guiding readers through the necessary practices for understanding these studies and generalizing the results to patient populations. Following a basic introduction to measuring test accuracy and study design, the authors successfully define various measures of diagnostic accuracy, describe strategies for designing diagnostic accuracy studies, and present key statistical methods for estimating and comparing test accuracy. Topics new to the Second Edition include: Methods for tests designed to detect and locate lesions Recommendations for covariate-adjustment Methods for estimating and comparing predictive values and sample size calculations Correcting techniques for verification and imperfect standard biases Sample size calculation for multiple reader studies when pilot data are available Updated meta-analysis methods, now incorporating random effects Three case studies thoroughly showcase some of the questions and statistical issues that arise in diagnostic medicine, with all associated data provided in detailed appendices. A related web site features Fortran, SAS®, and R software packages so that readers can conduct their own analyses. Statistical Methods in Diagnostic Medicine, Second Edition is an excellent supplement for biostatistics courses at the graduate level. It also serves as a valuable reference for clinicians and researchers working in the fields of medicine, epidemiology, and biostatistics.
Publisher: John Wiley & Sons
ISBN: 1118626044
Category : Medical
Languages : en
Pages : 597
Book Description
Praise for the First Edition " . . . the book is a valuable addition to the literature in the field, serving as a much-needed guide for both clinicians and advanced students."—Zentralblatt MATH A new edition of the cutting-edge guide to diagnostic tests in medical research In recent years, a considerable amount of research has focused on evolving methods for designing and analyzing diagnostic accuracy studies. Statistical Methods in Diagnostic Medicine, Second Edition continues to provide a comprehensive approach to the topic, guiding readers through the necessary practices for understanding these studies and generalizing the results to patient populations. Following a basic introduction to measuring test accuracy and study design, the authors successfully define various measures of diagnostic accuracy, describe strategies for designing diagnostic accuracy studies, and present key statistical methods for estimating and comparing test accuracy. Topics new to the Second Edition include: Methods for tests designed to detect and locate lesions Recommendations for covariate-adjustment Methods for estimating and comparing predictive values and sample size calculations Correcting techniques for verification and imperfect standard biases Sample size calculation for multiple reader studies when pilot data are available Updated meta-analysis methods, now incorporating random effects Three case studies thoroughly showcase some of the questions and statistical issues that arise in diagnostic medicine, with all associated data provided in detailed appendices. A related web site features Fortran, SAS®, and R software packages so that readers can conduct their own analyses. Statistical Methods in Diagnostic Medicine, Second Edition is an excellent supplement for biostatistics courses at the graduate level. It also serves as a valuable reference for clinicians and researchers working in the fields of medicine, epidemiology, and biostatistics.
An Introduction to Model-Based Survey Sampling with Applications
Author: Ray Chambers
Publisher: OUP Oxford
ISBN: 0191627909
Category : Mathematics
Languages : en
Pages : 280
Book Description
This text brings together important ideas on the model-based approach to sample survey, which has been developed over the last twenty years. Suitable for graduate students and professional statisticians, it moves from basic ideas fundamental to sampling to more rigorous mathematical modelling and data analysis and includes exercises and solutions.
Publisher: OUP Oxford
ISBN: 0191627909
Category : Mathematics
Languages : en
Pages : 280
Book Description
This text brings together important ideas on the model-based approach to sample survey, which has been developed over the last twenty years. Suitable for graduate students and professional statisticians, it moves from basic ideas fundamental to sampling to more rigorous mathematical modelling and data analysis and includes exercises and solutions.
Topics in Biostatistics
Author: Walter T. Ambrosius
Publisher: Springer Science & Business Media
ISBN: 1588295311
Category : Medical
Languages : en
Pages : 530
Book Description
This book presents a multidisciplinary survey of biostatics methods, each illustrated with hands-on examples. It introduces advanced methods in statistics, including how to choose and work with statistical packages. Specific topics of interest include microarray analysis, missing data techniques, power and sample size, statistical methods in genetics. The book is an essential resource for researchers at every level of their career.
Publisher: Springer Science & Business Media
ISBN: 1588295311
Category : Medical
Languages : en
Pages : 530
Book Description
This book presents a multidisciplinary survey of biostatics methods, each illustrated with hands-on examples. It introduces advanced methods in statistics, including how to choose and work with statistical packages. Specific topics of interest include microarray analysis, missing data techniques, power and sample size, statistical methods in genetics. The book is an essential resource for researchers at every level of their career.
Fundamentals of Clinical Data Science
Author: Pieter Kubben
Publisher: Springer
ISBN: 3319997130
Category : Medical
Languages : en
Pages : 219
Book Description
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Publisher: Springer
ISBN: 3319997130
Category : Medical
Languages : en
Pages : 219
Book Description
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Statistical Evaluation of Diagnostic Performance
Author: Kelly H. Zou
Publisher: CRC Press
ISBN: 1439812233
Category : Mathematics
Languages : en
Pages : 243
Book Description
Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are releva
Publisher: CRC Press
ISBN: 1439812233
Category : Mathematics
Languages : en
Pages : 243
Book Description
Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are releva
Epidemiology, Biostatistics, and Preventive Medicine
Author: James F. Jekel
Publisher: Elsevier Health Sciences
ISBN: 141603496X
Category : Medical
Languages : en
Pages : 436
Book Description
You'll find the latest on healthcare policy and financing, infectious diseases, chronic disease, and disease prevention technology.
Publisher: Elsevier Health Sciences
ISBN: 141603496X
Category : Medical
Languages : en
Pages : 436
Book Description
You'll find the latest on healthcare policy and financing, infectious diseases, chronic disease, and disease prevention technology.
Finite Mixture Models
Author: Geoffrey McLachlan
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419
Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419
Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
The Handbook of Medical Image Perception and Techniques
Author: Ehsan Samei
Publisher: Cambridge University Press
ISBN: 1108168817
Category : Science
Languages : en
Pages : 1478
Book Description
A state-of-the-art review of key topics in medical image perception science and practice, including associated techniques, illustrations and examples. This second edition contains extensive updates and substantial new content. Written by key figures in the field, it covers a wide range of topics including signal detection, image interpretation and advanced image analysis (e.g. deep learning) techniques for interpretive and computational perception. It provides an overview of the key techniques of medical image perception and observer performance research, and includes examples and applications across clinical disciplines including radiology, pathology and oncology. A final chapter discusses the future prospects of medical image perception and assesses upcoming challenges and possibilities, enabling readers to identify new areas for research. Written for both newcomers to the field and experienced researchers and clinicians, this book provides a comprehensive reference for those interested in medical image perception as means to advance knowledge and improve human health.
Publisher: Cambridge University Press
ISBN: 1108168817
Category : Science
Languages : en
Pages : 1478
Book Description
A state-of-the-art review of key topics in medical image perception science and practice, including associated techniques, illustrations and examples. This second edition contains extensive updates and substantial new content. Written by key figures in the field, it covers a wide range of topics including signal detection, image interpretation and advanced image analysis (e.g. deep learning) techniques for interpretive and computational perception. It provides an overview of the key techniques of medical image perception and observer performance research, and includes examples and applications across clinical disciplines including radiology, pathology and oncology. A final chapter discusses the future prospects of medical image perception and assesses upcoming challenges and possibilities, enabling readers to identify new areas for research. Written for both newcomers to the field and experienced researchers and clinicians, this book provides a comprehensive reference for those interested in medical image perception as means to advance knowledge and improve human health.