The Role of Erosion in Soil Organic Matter and Pyrogenic Carbon Dynamics in Fire-prone Temperate Forests PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Role of Erosion in Soil Organic Matter and Pyrogenic Carbon Dynamics in Fire-prone Temperate Forests PDF full book. Access full book title The Role of Erosion in Soil Organic Matter and Pyrogenic Carbon Dynamics in Fire-prone Temperate Forests by . Download full books in PDF and EPUB format.

The Role of Erosion in Soil Organic Matter and Pyrogenic Carbon Dynamics in Fire-prone Temperate Forests

The Role of Erosion in Soil Organic Matter and Pyrogenic Carbon Dynamics in Fire-prone Temperate Forests PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 364

Book Description
Wildfire and erosion are major perturbations to the global carbon cycle in dynamic, fire-affected ecosystems around the world, including temperate forest ecosystems in the Sierra Nevada. As a byproduct of fires, pyrogenic carbon (PyC) is formed due to incomplete combustion of biomass. PyC constitutes an important component of the soil carbon pool and has been noted for its long residence time in soil and its susceptibility to erosion. As part of my dissertation research, I determined the rate of PyC, bulk soil carbon, and other soil constituents erosion after two wildfires: the Gondola Fire that occurred in South Lake Tahoe in 2002, and the Rim Fire that affected parts of Yosemite National Park in 2013. I found significant and preferential erosion of PyC, and vertical mobilization of PyC down into the soil profile after the fires. The preferential erosion of PyC, and overall quality of the soil and eroded sediments were controlled by burn severity, with PyC from higher burn severity sites being more preferentially eroded. To assess the fate of PyC post-fire in dynamic landscapes, I incubated chars formed at different temperatures in soils from eroding and depositional landform positions. Both charring temperature and landform position played significant roles in controlling soil respiration, with the lower temperature chars and the soil from the depositional landform position having much higher respiration than higher temperature chars and the soil from the eroding landform position. The difference in breakdown rates of PyC in soil from different landform positions demonstrates the importance of considering landform position as a control on PyC persistence in soil and that the interaction between charring temperature and landform position plays a significant role in the persistence of PyC. The post-fire erosional transport of PyC may act in a feedback to enhance or decrease overall PyC and bulk carbon stocks in soil. In a modeling exercise, I showed that explicit consideration for erosional loss (from eroding slope positions) and depositional gain (in lower-lying depositional landform positions) of PyC in soil can have its mean residence time in soil. I found that ignoring the role of erosional lateral distribution on PyC dynamics can introduce error in estimated turnover times of up to 150 years. Among the major accomplishments of my dissertation project include the realistic integration of biogeochemical and geomorphological approaches to derive improved representation of mechanisms that regulate soil carbon persistence in dynamic landscapes that routinely experience more than one perturbation. Findings from my dissertation research will have far reaching implications for improving our understanding of fate of terrestrial carbon after it enters streams and other aquatic systems. Furthermore, results of this project will play important role in establishing how the interaction of fire and erosion will play out under anticipated climate change scenarios, and the implications of these interactions on biogeochemical cycling of essential elements in a warmer world with intensified hydrologic cycle.

The Role of Erosion in Soil Organic Matter and Pyrogenic Carbon Dynamics in Fire-prone Temperate Forests

The Role of Erosion in Soil Organic Matter and Pyrogenic Carbon Dynamics in Fire-prone Temperate Forests PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 364

Book Description
Wildfire and erosion are major perturbations to the global carbon cycle in dynamic, fire-affected ecosystems around the world, including temperate forest ecosystems in the Sierra Nevada. As a byproduct of fires, pyrogenic carbon (PyC) is formed due to incomplete combustion of biomass. PyC constitutes an important component of the soil carbon pool and has been noted for its long residence time in soil and its susceptibility to erosion. As part of my dissertation research, I determined the rate of PyC, bulk soil carbon, and other soil constituents erosion after two wildfires: the Gondola Fire that occurred in South Lake Tahoe in 2002, and the Rim Fire that affected parts of Yosemite National Park in 2013. I found significant and preferential erosion of PyC, and vertical mobilization of PyC down into the soil profile after the fires. The preferential erosion of PyC, and overall quality of the soil and eroded sediments were controlled by burn severity, with PyC from higher burn severity sites being more preferentially eroded. To assess the fate of PyC post-fire in dynamic landscapes, I incubated chars formed at different temperatures in soils from eroding and depositional landform positions. Both charring temperature and landform position played significant roles in controlling soil respiration, with the lower temperature chars and the soil from the depositional landform position having much higher respiration than higher temperature chars and the soil from the eroding landform position. The difference in breakdown rates of PyC in soil from different landform positions demonstrates the importance of considering landform position as a control on PyC persistence in soil and that the interaction between charring temperature and landform position plays a significant role in the persistence of PyC. The post-fire erosional transport of PyC may act in a feedback to enhance or decrease overall PyC and bulk carbon stocks in soil. In a modeling exercise, I showed that explicit consideration for erosional loss (from eroding slope positions) and depositional gain (in lower-lying depositional landform positions) of PyC in soil can have its mean residence time in soil. I found that ignoring the role of erosional lateral distribution on PyC dynamics can introduce error in estimated turnover times of up to 150 years. Among the major accomplishments of my dissertation project include the realistic integration of biogeochemical and geomorphological approaches to derive improved representation of mechanisms that regulate soil carbon persistence in dynamic landscapes that routinely experience more than one perturbation. Findings from my dissertation research will have far reaching implications for improving our understanding of fate of terrestrial carbon after it enters streams and other aquatic systems. Furthermore, results of this project will play important role in establishing how the interaction of fire and erosion will play out under anticipated climate change scenarios, and the implications of these interactions on biogeochemical cycling of essential elements in a warmer world with intensified hydrologic cycle.

From Fires to Oceans: Dynamics of Fire-Derived Organic Matter in Terrestrial and Aquatic Ecosystems

From Fires to Oceans: Dynamics of Fire-Derived Organic Matter in Terrestrial and Aquatic Ecosystems PDF Author: Samuel Abiven
Publisher: Frontiers Media SA
ISBN: 2889458245
Category :
Languages : en
Pages : 258

Book Description
Fire-derived organic matter, also known as pyrogenic carbon (PyC), is ubiquitous on Earth. It can be found in soils, sediments, water and air. In this wide range of environments, fire-derived organic matter, represents a key component of the organic matter pool, and, in many cases, the largest identifiable group of organic compounds. PyC is also one of the most persistent organic matter fractions in the ecosystems, and its study is, therefore, particularly relevant for the global carbon cycle. From its production during vegetation fires to its transfer into soils, sediments and waters, PyC goes through different transformations, both abiotic and biotic. Contrary to early assumptions, PyC is not inert and interacts strongly with the environment: evidence of microbial decomposition, oxidation patterns and interactions with minerals have been described in different matrices. PyC travels across these different environments and it is modified chemically and physically, but remains persistent. This Research Topic explores important questions in our understanding of fire-derived organic matter, from the characterization and quantification of PyC components, to the transformation and mobilization processes taking place on terrestrial and aquatic ecosystems. The studies compiled here provide novel and, often, unexpected results. They all answer some of the questions posed and, more importantly, provide scope for many more.

Soil Erosion and Carbon Dynamics

Soil Erosion and Carbon Dynamics PDF Author: Eric J. Roose
Publisher: CRC Press
ISBN: 113546054X
Category : Nature
Languages : en
Pages : 499

Book Description
The most complete, nonpartisan source of information on this hot agronomic topic available today, this book brings together a diverse group of papers and data to resolve the debate between sedimentologists and soil scientists and agronomists over whether the effects of soil erosion on carbon and atmospheric CO2 is beneficial or destructive. Divided into four sections, it offers data on how soil erosion affects soil, water, and air quality. Topics include mineralization rate, inundation, sediment deposition, and global warming potential, as well as carbon dioxide, methane, and nitrous oxide emissions, and the implications of soil erosion on the global carbon cycle and carbon budget.

Forest and Rangeland Soils of the United States Under Changing Conditions

Forest and Rangeland Soils of the United States Under Changing Conditions PDF Author: Richard V. Pouyat
Publisher: Springer Nature
ISBN: 3030452166
Category : Science
Languages : en
Pages : 306

Book Description
This open access book synthesizes leading-edge science and management information about forest and rangeland soils of the United States. It offers ways to better understand changing conditions and their impacts on soils, and explores directions that positively affect the future of forest and rangeland soil health. This book outlines soil processes and identifies the research needed to manage forest and rangeland soils in the United States. Chapters give an overview of the state of forest and rangeland soils research in the Nation, including multi-decadal programs (chapter 1), then summarizes various human-caused and natural impacts and their effects on soil carbon, hydrology, biogeochemistry, and biological diversity (chapters 2–5). Other chapters look at the effects of changing conditions on forest soils in wetland and urban settings (chapters 6–7). Impacts include: climate change, severe wildfires, invasive species, pests and diseases, pollution, and land use change. Chapter 8 considers approaches to maintaining or regaining forest and rangeland soil health in the face of these varied impacts. Mapping, monitoring, and data sharing are discussed in chapter 9 as ways to leverage scientific and human resources to address soil health at scales from the landscape to the individual parcel (monitoring networks, data sharing Web sites, and educational soils-centered programs are tabulated in appendix B). Chapter 10 highlights opportunities for deepening our understanding of soils and for sustaining long-term ecosystem health and appendix C summarizes research needs. Nine regional summaries (appendix A) offer a more detailed look at forest and rangeland soils in the United States and its Affiliates.

Soils Under Fire

Soils Under Fire PDF Author: Heather E. Erickson
Publisher:
ISBN:
Category : Fire ecology
Languages : en
Pages : 24

Book Description
Soils are fundamental to a healthy and functioning ecosystem. Therefore, forest land managers can greatly benefit from a more thorough understanding of the ecological impacts of fire and fuel management activities on the vital services soils provide. We present a summary of new research on fire effects and soils made possible through the Joint Fire Science Program and highlight management implications where applicable. Some responses were consistent across sites, whereas others were unique and may not easily be extrapolated to other sites. Selected findings include (1) postfire soil water repellency is most likely to occur in areas of high burn severity and is closely related to surface vegetation; (2) although wildfire has the potential to decrease the amount of carbon stored in soils, major changes in land use, such as conversion from forest to grasslands, present a much greater threat to carbon storage; (3) prescribed fires, which tend to burn less severely than wildfires and oftentimes have minor effects on soils, may nonetheless decrease species richness of certain types of fungi; and (4) early season prescribed burns tend to have less impact than late season burns on soil organisms, soil carbon, and other soil properties.

Fire Effects on Soils and Restoration Strategies

Fire Effects on Soils and Restoration Strategies PDF Author: A Cerda
Publisher: CRC Press
ISBN: 1439843333
Category : Science
Languages : en
Pages : 630

Book Description
This book has been published a decade after Fires Effects on Ecosystems by DeBano, Neary, and Folliott (1998), and builds on their foundation to update knowledge on natural post-fire processes and describe the use and effectiveness of various restoration strategies that may be applied when human intervention is warranted. The chapters in this book,

Fire Effects on Soil Properties

Fire Effects on Soil Properties PDF Author: Paulo Pereira
Publisher: CSIRO PUBLISHING
ISBN: 1486308155
Category : Science
Languages : en
Pages : 400

Book Description
Wildland fires are occurring more frequently and affecting more of Earth's surface than ever before. These fires affect the properties of soils and the processes by which they form, but the nature of these impacts has not been well understood. Given that healthy soil is necessary to sustain biodiversity, ecosystems and agriculture, the impact of fire on soil is a vital field of research. Fire Effects on Soil Properties brings together current research on the effects of fire on the physical, biological and chemical properties of soil. Written by over 60 international experts in the field, it includes examples from fire-prone areas across the world, dealing with ash, meso and macrofauna, smouldering fires, recurrent fires and management of fire-affected soils. It also describes current best practice methodologies for research and monitoring of fire effects and new methodologies for future research. This is the first time information on this topic has been presented in a single volume and the book will be an important reference for students, practitioners, managers and academics interested in the effects of fire on ecosystems, including soil scientists, geologists, forestry researchers and environmentalists.

Effects of Fire on Soil

Effects of Fire on Soil PDF Author:
Publisher:
ISBN:
Category : Forest fires
Languages : en
Pages : 42

Book Description


The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect

The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect PDF Author: John M Kimble
Publisher: CRC Press
ISBN: 9780367454760
Category :
Languages : en
Pages : 448

Book Description
Much attention has been given to above ground biomass and its potential as a carbon sink, but in a mature forest ecosystem 40 to 60 percent of the stored carbon is below ground. As increasing numbers of forests are managed in a wide diversity of climates and soils, the importance of forest soils as a potential carbon sink grows. The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect provides researchers and policy makers with an understanding of soil processes and their relation to carbon dynamics, as well as strategies to monitor and techniques to measure forest soil carbon. It covers the effects of management on soils in a wide range of forest ecosystems together with policy options that are effective and benefit both the forest community and the over all environment. This valuable reference provides forest managers, urban planners, land owners, policy makers, and the general public with guidance that will allow for a holistic approach to land management, environmental quality, and improved forest productivity.

Land-use Change Effects on Soil Organic Carbon, Total Soil Nitrogen, and Soil Erosion in a Temperate Forest and Grassland

Land-use Change Effects on Soil Organic Carbon, Total Soil Nitrogen, and Soil Erosion in a Temperate Forest and Grassland PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description