The Riemann Hypothesis and Hilbert's Tenth Problem PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Riemann Hypothesis and Hilbert's Tenth Problem PDF full book. Access full book title The Riemann Hypothesis and Hilbert's Tenth Problem by Sarvadaman Chowla. Download full books in PDF and EPUB format.

The Riemann Hypothesis and Hilbert's Tenth Problem

The Riemann Hypothesis and Hilbert's Tenth Problem PDF Author: Sarvadaman Chowla
Publisher: CRC Press
ISBN: 9780677001401
Category : Mathematics
Languages : en
Pages : 144

Book Description


The Riemann Hypothesis and Hilbert's Tenth Problem

The Riemann Hypothesis and Hilbert's Tenth Problem PDF Author: Sarvadaman Chowla
Publisher: CRC Press
ISBN: 9780677001401
Category : Mathematics
Languages : en
Pages : 144

Book Description


The Riemann-Hilbert Problem

The Riemann-Hilbert Problem PDF Author: D. V. Anosov
Publisher: Springer Science & Business Media
ISBN: 3322929094
Category : Mathematics
Languages : en
Pages : 202

Book Description
The Riemann-Hilbert problem (Hilbert's 21st problem) belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concerns the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this turned out to be a rare case of a wrong forecast made by him. In 1989 the second author (A. B.) discovered a counterexample, thus obtaining a negative solution to Hilbert's 21st problem in its original form.

Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions

Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions PDF Author: Thomas Trogdon
Publisher: SIAM
ISBN: 1611974194
Category : Mathematics
Languages : en
Pages : 370

Book Description
Riemann?Hilbert problems are fundamental objects of study within complex analysis. Many problems in differential equations and integrable systems, probability and random matrix theory, and asymptotic analysis can be solved by reformulation as a Riemann?Hilbert problem.This book, the most comprehensive one to date on the applied and computational theory of Riemann?Hilbert problems, includes an introduction to computational complex analysis, an introduction to the applied theory of Riemann?Hilbert problems from an analytical and numerical perspective, and a discussion of applications to integrable systems, differential equations, and special function theory. It also includes six fundamental examples and five more sophisticated examples of the analytical and numerical Riemann?Hilbert method, each of mathematical or physical significance or both.?

The Riemann Hypothesis

The Riemann Hypothesis PDF Author: Peter B. Borwein
Publisher: Springer Science & Business Media
ISBN: 0387721258
Category : Mathematics
Languages : en
Pages : 543

Book Description
The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.

Hilbert’s Tenth Problem: An Introduction to Logic, Number Theory, and Computability

Hilbert’s Tenth Problem: An Introduction to Logic, Number Theory, and Computability PDF Author: M. Ram Murty
Publisher: American Mathematical Soc.
ISBN: 1470443996
Category : Mathematics
Languages : en
Pages : 256

Book Description
Hilbert's tenth problem is one of 23 problems proposed by David Hilbert in 1900 at the International Congress of Mathematicians in Paris. These problems gave focus for the exponential development of mathematical thought over the following century. The tenth problem asked for a general algorithm to determine if a given Diophantine equation has a solution in integers. It was finally resolved in a series of papers written by Julia Robinson, Martin Davis, Hilary Putnam, and finally Yuri Matiyasevich in 1970. They showed that no such algorithm exists. This book is an exposition of this remarkable achievement. Often, the solution to a famous problem involves formidable background. Surprisingly, the solution of Hilbert's tenth problem does not. What is needed is only some elementary number theory and rudimentary logic. In this book, the authors present the complete proof along with the romantic history that goes with it. Along the way, the reader is introduced to Cantor's transfinite numbers, axiomatic set theory, Turing machines, and Gödel's incompleteness theorems. Copious exercises are included at the end of each chapter to guide the student gently on this ascent. For the advanced student, the final chapter highlights recent developments and suggests future directions. The book is suitable for undergraduates and graduate students. It is essentially self-contained.

Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry

Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry PDF Author: Jan Denef
Publisher: American Mathematical Soc.
ISBN: 0821826220
Category : Mathematics
Languages : en
Pages : 384

Book Description
This book is the result of a meeting that took place at the University of Ghent (Belgium) on the relations between Hilbert's tenth problem, arithmetic, and algebraic geometry. Included are written articles detailing the lectures that were given as well as contributed papers on current topics of interest. The following areas are addressed: an historical overview of Hilbert's tenth problem, Hilbert's tenth problem for various rings and fields, model theory and local-global principles, including relations between model theory and algebraic groups and analytic geometry, conjectures in arithmetic geometry and the structure of diophantine sets, for example with Mazur's conjecture, Lang's conjecture, and Bücchi's problem, and results on the complexity of diophantine geometry, highlighting the relation to the theory of computation. The volume allows the reader to learn and compare different approaches (arithmetical, geometrical, topological, model-theoretical, and computational) to the general structural analysis of the set of solutions of polynomial equations. It would make a nice contribution to graduate and advanced graduate courses on logic, algebraic geometry, and number theory

Hilbert's Tenth Problem

Hilbert's Tenth Problem PDF Author: I︠U︡riĭ V. Matii︠a︡sevich
Publisher: MIT Press
ISBN: 9780262132954
Category : Computers
Languages : en
Pages : 296

Book Description
This book presents the full, self-contained negative solution of Hilbert's 10th problem.

Painleve Transcendents

Painleve Transcendents PDF Author: A. S. Fokas
Publisher: American Mathematical Soc.
ISBN: 082183651X
Category : Mathematics
Languages : en
Pages : 570

Book Description
At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtainedanswering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutionsof the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points, play a crucial role in the applications of these functions. It is shown in this book, that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called theRiemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail theRiemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.

The Riemann Hypothesis

The Riemann Hypothesis PDF Author: Karl Sabbagh
Publisher: Macmillan
ISBN: 9780374250072
Category : Mathematics
Languages : en
Pages : 364

Book Description
An engaging, informative, and wryly humorous exploration of one of the great conundrums of all time In 1859 Bernhard Riemann, a shy German mathematician, wrote an eight-page article giving an answer to a problem that had long puzzled mathematicians. But he didn’t provide a proof. In fact, he said he couldn’t prove it but he thought that his answer was “very probably” true. From the publication of that paper to the present day, the world’s mathematicians have been fascinated, infuriated, and obsessed with proving the Riemann Hypothesis, and so great is the interest in its solution that in 2001 an American foundation put up prize money of $1 million for the first person to demonstrate that the hypothesis is correct. The hypothesis refers to prime numbers, which are in some sense the atoms from which all other numbers are constructed, and seeks to explain where every single prime to infinity will occur. Riemann’s idea—if true—would illuminate how these numbers are distributed, and if false will throw pure mathematics into confusion. Karl Sabbagh meets some of the world’s mathematicians who spend their lives thinking about the Riemann Hypothesis, focusing attention in particular on “Riemann’s zeros,” a series of points that are believed to lie in a straight line, though no one can prove it. Accessible and vivid, The Riemann Hypothesis is a brilliant explanation of numbers and a profound meditation on the ultimate meaning of mathematics.

Martin Davis on Computability, Computational Logic, and Mathematical Foundations

Martin Davis on Computability, Computational Logic, and Mathematical Foundations PDF Author: Eugenio G. Omodeo
Publisher: Springer
ISBN: 3319418424
Category : Philosophy
Languages : en
Pages : 454

Book Description
This book presents a set of historical recollections on the work of Martin Davis and his role in advancing our understanding of the connections between logic, computing, and unsolvability. The individual contributions touch on most of the core aspects of Davis’ work and set it in a contemporary context. They analyse, discuss and develop many of the ideas and concepts that Davis put forward, including such issues as contemporary satisfiability solvers, essential unification, quantum computing and generalisations of Hilbert’s tenth problem. The book starts out with a scientific autobiography by Davis, and ends with his responses to comments included in the contributions. In addition, it includes two previously unpublished original historical papers in which Davis and Putnam investigate the decidable and the undecidable side of Logic, as well as a full bibliography of Davis’ work. As a whole, this book shows how Davis’ scientific work lies at the intersection of computability, theoretical computer science, foundations of mathematics, and philosophy, and draws its unifying vision from his deep involvement in Logic.