Author: E. Grosswald
Publisher: Springer Science & Business Media
ISBN: 1461385660
Category : Mathematics
Languages : en
Pages : 262
Book Description
During the academic year 1980-1981 I was teaching at the Technion-the Israeli Institute of Technology-in Haifa. The audience was small, but con sisted of particularly gifted and eager listeners; unfortunately, their back ground varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the inten tion of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience. A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the Encyclopedia of Mathematical Sciences under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be.
Representations of Integers as Sums of Squares
Author: E. Grosswald
Publisher: Springer Science & Business Media
ISBN: 1461385660
Category : Mathematics
Languages : en
Pages : 262
Book Description
During the academic year 1980-1981 I was teaching at the Technion-the Israeli Institute of Technology-in Haifa. The audience was small, but con sisted of particularly gifted and eager listeners; unfortunately, their back ground varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the inten tion of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience. A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the Encyclopedia of Mathematical Sciences under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be.
Publisher: Springer Science & Business Media
ISBN: 1461385660
Category : Mathematics
Languages : en
Pages : 262
Book Description
During the academic year 1980-1981 I was teaching at the Technion-the Israeli Institute of Technology-in Haifa. The audience was small, but con sisted of particularly gifted and eager listeners; unfortunately, their back ground varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the inten tion of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience. A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the Encyclopedia of Mathematical Sciences under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be.
Sums of Squares of Integers
Author: Carlos J. Moreno
Publisher: CRC Press
ISBN: 1584884568
Category : Mathematics
Languages : en
Pages : 368
Book Description
Sums of Squares of Integers covers topics in combinatorial number theory as they relate to counting representations of integers as sums of a certain number of squares. The book introduces a stimulating area of number theory where research continues to proliferate. It is a book of "firsts" - namely it is the first book to combine Liouville's elementary methods with the analytic methods of modular functions to study the representation of integers as sums of squares. It is the first book to tell how to compute the number of representations of an integer n as the sum of s squares of integers for any s and n. It is also the first book to give a proof of Szemeredi's theorem, and is the first number theory book to discuss how the modern theory of modular forms complements and clarifies the classical fundamental results about sums of squares. The book presents several existing, yet still interesting and instructive, examples of modular forms. Two chapters develop useful properties of the Bernoulli numbers and illustrate arithmetic progressions, proving the theorems of van der Waerden, Roth, and Szemeredi. The book also explains applications of the theory to three problems that lie outside of number theory in the areas of cryptanalysis, microwave radiation, and diamond cutting. The text is complemented by the inclusion of over one hundred exercises to test the reader's understanding.
Publisher: CRC Press
ISBN: 1584884568
Category : Mathematics
Languages : en
Pages : 368
Book Description
Sums of Squares of Integers covers topics in combinatorial number theory as they relate to counting representations of integers as sums of a certain number of squares. The book introduces a stimulating area of number theory where research continues to proliferate. It is a book of "firsts" - namely it is the first book to combine Liouville's elementary methods with the analytic methods of modular functions to study the representation of integers as sums of squares. It is the first book to tell how to compute the number of representations of an integer n as the sum of s squares of integers for any s and n. It is also the first book to give a proof of Szemeredi's theorem, and is the first number theory book to discuss how the modern theory of modular forms complements and clarifies the classical fundamental results about sums of squares. The book presents several existing, yet still interesting and instructive, examples of modular forms. Two chapters develop useful properties of the Bernoulli numbers and illustrate arithmetic progressions, proving the theorems of van der Waerden, Roth, and Szemeredi. The book also explains applications of the theory to three problems that lie outside of number theory in the areas of cryptanalysis, microwave radiation, and diamond cutting. The text is complemented by the inclusion of over one hundred exercises to test the reader's understanding.
Figurate Numbers
Author: Elena Deza
Publisher: World Scientific
ISBN: 9814355488
Category : Mathematics
Languages : en
Pages : 475
Book Description
Plane figurate numbers -- Space figurate numbers -- Multidimensional figurate members -- Areas of number theory including figurate numbers -- Fermat's polygonal number theorem.
Publisher: World Scientific
ISBN: 9814355488
Category : Mathematics
Languages : en
Pages : 475
Book Description
Plane figurate numbers -- Space figurate numbers -- Multidimensional figurate members -- Areas of number theory including figurate numbers -- Fermat's polygonal number theorem.
Elements of Number Theory
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387217355
Category : Mathematics
Languages : en
Pages : 266
Book Description
Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.
Publisher: Springer Science & Business Media
ISBN: 0387217355
Category : Mathematics
Languages : en
Pages : 266
Book Description
Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.
Methods of Solving Number Theory Problems
Author: Ellina Grigorieva
Publisher: Birkhäuser
ISBN: 3319909150
Category : Mathematics
Languages : en
Pages : 405
Book Description
Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.
Publisher: Birkhäuser
ISBN: 3319909150
Category : Mathematics
Languages : en
Pages : 405
Book Description
Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer
ISBN: 9400959834
Category : Mathematics
Languages : en
Pages : 732
Book Description
Publisher: Springer
ISBN: 9400959834
Category : Mathematics
Languages : en
Pages : 732
Book Description
Number Theory
Author: David V. Chudnovsky
Publisher: Springer Science & Business Media
ISBN: 1461224187
Category : Mathematics
Languages : en
Pages : 292
Book Description
This volume is dedicated to Harvey Cohn, Distinguished Professor Emeritus of Mathematics at City College (CUNY). Harvey was one of the organizers of the New York Number Theory Seminar, and was deeply involved in all aspects of the Seminar from its first meeting in January, 1982, until his retirement in December, 1995. We wish him good health and continued hapiness and success in mathematics. The papers in this volume are revised and expanded versions of lectures delivered in the New York Number Theory Seminar. The Seminar meets weekly at the Graduate School and University Center of the City University of New York (CUNY). In addition, some of the papers in this book were presented at a conference on Combinatorial Number Theory that the New York Number Theory Seminar organized at Lehman College (CUNY). Here is a short description of the papers in this volume. The paper of R. T. Bumby focuses on "elementary" fast algorithms in sums of two and four squares. The actual talk had been accompanied by dazzling computer demonstrations. The detailed review of H. Cohn describes the construction of modular equations as the basis of studies of modular forms in the one-dimensional and Hilbert cases.
Publisher: Springer Science & Business Media
ISBN: 1461224187
Category : Mathematics
Languages : en
Pages : 292
Book Description
This volume is dedicated to Harvey Cohn, Distinguished Professor Emeritus of Mathematics at City College (CUNY). Harvey was one of the organizers of the New York Number Theory Seminar, and was deeply involved in all aspects of the Seminar from its first meeting in January, 1982, until his retirement in December, 1995. We wish him good health and continued hapiness and success in mathematics. The papers in this volume are revised and expanded versions of lectures delivered in the New York Number Theory Seminar. The Seminar meets weekly at the Graduate School and University Center of the City University of New York (CUNY). In addition, some of the papers in this book were presented at a conference on Combinatorial Number Theory that the New York Number Theory Seminar organized at Lehman College (CUNY). Here is a short description of the papers in this volume. The paper of R. T. Bumby focuses on "elementary" fast algorithms in sums of two and four squares. The actual talk had been accompanied by dazzling computer demonstrations. The detailed review of H. Cohn describes the construction of modular equations as the basis of studies of modular forms in the one-dimensional and Hilbert cases.
Index to Mathematical Problems, 1975-1979
Author: Stanley Rabinowitz
Publisher: MathPro Press
ISBN: 9780962640124
Category : Mathematics
Languages : en
Pages : 548
Book Description
Publisher: MathPro Press
ISBN: 9780962640124
Category : Mathematics
Languages : en
Pages : 548
Book Description
An Introduction to the Theory of Numbers
Author: G. H. Hardy
Publisher: Oxford University Press
ISBN: 0199219869
Category : Mathematics
Languages : en
Pages : 645
Book Description
The sixth edition of the classic undergraduate text in elementary number theory includes a new chapter on elliptic curves and their role in the proof of Fermat's Last Theorem, a foreword by Andrew Wiles and extensively revised and updated end-of-chapter notes.
Publisher: Oxford University Press
ISBN: 0199219869
Category : Mathematics
Languages : en
Pages : 645
Book Description
The sixth edition of the classic undergraduate text in elementary number theory includes a new chapter on elliptic curves and their role in the proof of Fermat's Last Theorem, a foreword by Andrew Wiles and extensively revised and updated end-of-chapter notes.
General Inequalities 2
Author: BECKENBACH
Publisher: Birkhäuser
ISBN: 3034863241
Category : Science
Languages : en
Pages : 454
Book Description
Publisher: Birkhäuser
ISBN: 3034863241
Category : Science
Languages : en
Pages : 454
Book Description