Author: Daniel Beysens
Publisher: Springer Nature
ISBN: 3030904423
Category : Science
Languages : en
Pages : 458
Book Description
In this book, the author focuses on the physics behind dew, breaths figures, and dropwise condensation phenomena to introduce scientists, engineers and students to the many original processes involved in condensation. Consisting of 15 Chapters, 18 Appendices and over 500 references, the reader learns the needed theoretical backgrounds and formulae to understand the complexity of dropwise condensation. Heat and mass transfer, nucleation and growth on various substrates are considered (solid, liquid, plastic, undergoing phase change or micro-patterned substrates). The particular role of thermal or geometrical discontinuities where growth can be enhanced or reduced, dynamical aspects of self-diffusion, problems related to drop collection by gravity and the optics of dropwise condensation are all discussed. Although the content mainly deals with condensation from humid air, it can readily be generalized to condensation of any substance. The specificities of pure vapor condensation (e.g. steam) are also examined. Numerous images are provided within the text to illustrate the physics. This book is meant for those studying or researching dew and dropwise condensation, but also for individuals wishing to develop their knowledge on the subject.
The Physics of Dew, Breath Figures and Dropwise Condensation
Author: Daniel Beysens
Publisher: Springer Nature
ISBN: 3030904423
Category : Science
Languages : en
Pages : 458
Book Description
In this book, the author focuses on the physics behind dew, breaths figures, and dropwise condensation phenomena to introduce scientists, engineers and students to the many original processes involved in condensation. Consisting of 15 Chapters, 18 Appendices and over 500 references, the reader learns the needed theoretical backgrounds and formulae to understand the complexity of dropwise condensation. Heat and mass transfer, nucleation and growth on various substrates are considered (solid, liquid, plastic, undergoing phase change or micro-patterned substrates). The particular role of thermal or geometrical discontinuities where growth can be enhanced or reduced, dynamical aspects of self-diffusion, problems related to drop collection by gravity and the optics of dropwise condensation are all discussed. Although the content mainly deals with condensation from humid air, it can readily be generalized to condensation of any substance. The specificities of pure vapor condensation (e.g. steam) are also examined. Numerous images are provided within the text to illustrate the physics. This book is meant for those studying or researching dew and dropwise condensation, but also for individuals wishing to develop their knowledge on the subject.
Publisher: Springer Nature
ISBN: 3030904423
Category : Science
Languages : en
Pages : 458
Book Description
In this book, the author focuses on the physics behind dew, breaths figures, and dropwise condensation phenomena to introduce scientists, engineers and students to the many original processes involved in condensation. Consisting of 15 Chapters, 18 Appendices and over 500 references, the reader learns the needed theoretical backgrounds and formulae to understand the complexity of dropwise condensation. Heat and mass transfer, nucleation and growth on various substrates are considered (solid, liquid, plastic, undergoing phase change or micro-patterned substrates). The particular role of thermal or geometrical discontinuities where growth can be enhanced or reduced, dynamical aspects of self-diffusion, problems related to drop collection by gravity and the optics of dropwise condensation are all discussed. Although the content mainly deals with condensation from humid air, it can readily be generalized to condensation of any substance. The specificities of pure vapor condensation (e.g. steam) are also examined. Numerous images are provided within the text to illustrate the physics. This book is meant for those studying or researching dew and dropwise condensation, but also for individuals wishing to develop their knowledge on the subject.
Clean Water: Next Generation Technologies
Author: Khouloud Jlassi
Publisher: Springer Nature
ISBN: 303148228X
Category :
Languages : en
Pages : 287
Book Description
Publisher: Springer Nature
ISBN: 303148228X
Category :
Languages : en
Pages : 287
Book Description
Dew Water
Author: Daniel Beysens
Publisher: CRC Press
ISBN: 1000793915
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
The world’s ever-increasing need for fresh water has led to the use of non-conventional sources such as rain and fog water collection. Although rain water collection is relatively simple, the supply is often erratic. Passive fog water collection has been used in several parts of the world but is only relevant to certain geographical locations. Dew occurrence, however, is far more widespread, can form in most climates and geographic settings, show high frequency and prevalence throughout the year. During the past 20 years, dew collection has therefore been investigated as a serious supplemental source of fresh water. Dew Water offers a thorough review of dew, its formation characteristics and potential for dew collection, for audiences that include policy-makers, non-governmental organizations involved in development aid and sustainable development, engineers, urban planners, researchers and students.After providing a background on atmospheric water, humid air, and sky and materials emissivity, the book deals with dew formation and its estimation with a focus on the use of meteorological data. Dew measurement techniques are reviewed and discussed as well as dew collection by passive means. Computational fluid dynamics technique is described for better design of dew collectors. Dew quality (chemistry, biology) is assessed in view of potable water quality. Costs and economic aspects are also considered.
Publisher: CRC Press
ISBN: 1000793915
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
The world’s ever-increasing need for fresh water has led to the use of non-conventional sources such as rain and fog water collection. Although rain water collection is relatively simple, the supply is often erratic. Passive fog water collection has been used in several parts of the world but is only relevant to certain geographical locations. Dew occurrence, however, is far more widespread, can form in most climates and geographic settings, show high frequency and prevalence throughout the year. During the past 20 years, dew collection has therefore been investigated as a serious supplemental source of fresh water. Dew Water offers a thorough review of dew, its formation characteristics and potential for dew collection, for audiences that include policy-makers, non-governmental organizations involved in development aid and sustainable development, engineers, urban planners, researchers and students.After providing a background on atmospheric water, humid air, and sky and materials emissivity, the book deals with dew formation and its estimation with a focus on the use of meteorological data. Dew measurement techniques are reviewed and discussed as well as dew collection by passive means. Computational fluid dynamics technique is described for better design of dew collectors. Dew quality (chemistry, biology) is assessed in view of potable water quality. Costs and economic aspects are also considered.
Convection in Liquids
Author: J.K. Platten
Publisher: Springer Science & Business Media
ISBN: 3642820956
Category : Science
Languages : en
Pages : 695
Book Description
Both of the authors of this book are disciples and collaborators of the Brussels school of thermodynamics. Their particular domain of competence is the application of numerical methods to the many highly nonlinear problems which have arisen in the context of recent developments in the thermodynamics of irreversi ble processes: stability of states far from equilibrium, search for marginal critical states, bifwrcation phenomena, multiple stationnary states, dissipative structures, etc. These problems cannot in general be handled using only the clas sical and mathematically rigorous methods of the theory of differential, partial differential, and int~grodifferential equations. The present authors demonstrate how approximate methods, re lyi ng usually on powerful computers, lead to significant progress in these areas, if one is prepa red to accept a certain lack of rigor, such as, for example, the lack of proof for the convergence of the series used in the context of problems which are not self adjoint, nor even linear. The results thus obtained must consequently be submit ted to an exacting confrontation with experimental observations. - Even though, the '1 imited information obtained concerning the, often unsuspec ted, mechanisms underlying the observed phenomena is both precious and frequently sufficient. This information results from the properties of the trial functions best suited to the constraints of the problem such as the initial, boundary, and "feedback" conditions, and the analysis of their behavior in the course of the evolution of the system.
Publisher: Springer Science & Business Media
ISBN: 3642820956
Category : Science
Languages : en
Pages : 695
Book Description
Both of the authors of this book are disciples and collaborators of the Brussels school of thermodynamics. Their particular domain of competence is the application of numerical methods to the many highly nonlinear problems which have arisen in the context of recent developments in the thermodynamics of irreversi ble processes: stability of states far from equilibrium, search for marginal critical states, bifwrcation phenomena, multiple stationnary states, dissipative structures, etc. These problems cannot in general be handled using only the clas sical and mathematically rigorous methods of the theory of differential, partial differential, and int~grodifferential equations. The present authors demonstrate how approximate methods, re lyi ng usually on powerful computers, lead to significant progress in these areas, if one is prepa red to accept a certain lack of rigor, such as, for example, the lack of proof for the convergence of the series used in the context of problems which are not self adjoint, nor even linear. The results thus obtained must consequently be submit ted to an exacting confrontation with experimental observations. - Even though, the '1 imited information obtained concerning the, often unsuspec ted, mechanisms underlying the observed phenomena is both precious and frequently sufficient. This information results from the properties of the trial functions best suited to the constraints of the problem such as the initial, boundary, and "feedback" conditions, and the analysis of their behavior in the course of the evolution of the system.
Recent Advances in Technology Research and Education
Author: Dumitru Luca
Publisher: Springer
ISBN: 3319674595
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
This book presents selected contributions to the 16th International Conference on Global Research and Education Inter-Academia 2017 hosted by Alexandru Ioan Cuza University of Iași, Romania from 25 to 28 September 2017. It is the third volume in the series, following the editions from 2015 and 2016. Fundamental and applied research in natural sciences have led to crucial developments in the ongoing 4th global industrial revolution, in the course of which information technology has become deeply embedded in industrial management, research and innovation – and just as deeply in education and everyday life. Materials science and nanotechnology, plasma and solid state physics, photonics, electrical and electronic engineering, robotics and metrology, signal processing, e-learning, intelligent and soft computing have long since been central research priorities for the Inter-Academia Community (I-AC) – a body comprising 14 universities and research institutes from Japan and Central/East-European countries that agreed, in 2002, to coordinate their research and education programs so as to better address today’s challenges. The book is intended for use in academic, government, and industrial R&D departments as a reference tool in research and technology education. The 42 peer-reviewed papers were written by more than 119 leading scientists from 14 countries, most of them affiliated to the I-AC.
Publisher: Springer
ISBN: 3319674595
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
This book presents selected contributions to the 16th International Conference on Global Research and Education Inter-Academia 2017 hosted by Alexandru Ioan Cuza University of Iași, Romania from 25 to 28 September 2017. It is the third volume in the series, following the editions from 2015 and 2016. Fundamental and applied research in natural sciences have led to crucial developments in the ongoing 4th global industrial revolution, in the course of which information technology has become deeply embedded in industrial management, research and innovation – and just as deeply in education and everyday life. Materials science and nanotechnology, plasma and solid state physics, photonics, electrical and electronic engineering, robotics and metrology, signal processing, e-learning, intelligent and soft computing have long since been central research priorities for the Inter-Academia Community (I-AC) – a body comprising 14 universities and research institutes from Japan and Central/East-European countries that agreed, in 2002, to coordinate their research and education programs so as to better address today’s challenges. The book is intended for use in academic, government, and industrial R&D departments as a reference tool in research and technology education. The 42 peer-reviewed papers were written by more than 119 leading scientists from 14 countries, most of them affiliated to the I-AC.
Ice Adhesion
Author: K. L. Mittal
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Microscale Surface Tension and Its Applications
Author: Pierre Lambert
Publisher: MDPI
ISBN: 3039215647
Category : Technology & Engineering
Languages : en
Pages : 240
Book Description
Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to: Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems.
Publisher: MDPI
ISBN: 3039215647
Category : Technology & Engineering
Languages : en
Pages : 240
Book Description
Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to: Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems.
The Physics of Clouds
Author: B.J. Mason
Publisher: OUP Oxford
ISBN: 019958804X
Category : Science
Languages : en
Pages : 688
Book Description
Cloud physics is concerned with the processes responsible for the formation of clouds and the release of precipitation. This classic book gives a comprehensive account of research on the microphysical processes of nucleation, condensation, droplet growth, initiation and growth of snow crystals, and the mechanisms of precipitation release.
Publisher: OUP Oxford
ISBN: 019958804X
Category : Science
Languages : en
Pages : 688
Book Description
Cloud physics is concerned with the processes responsible for the formation of clouds and the release of precipitation. This classic book gives a comprehensive account of research on the microphysical processes of nucleation, condensation, droplet growth, initiation and growth of snow crystals, and the mechanisms of precipitation release.
A Dictionary of Chemical Engineering
Author: Carl Schaschke
Publisher: OUP Oxford
ISBN: 0191002690
Category : Reference
Languages : en
Pages : 449
Book Description
A Dictionary of Chemical Engineering is one of the latest additions to the market leading Oxford Paperback Reference series. In over 3,400 concise and authoritative A to Z entries, it provides definitions and explanations for chemical engineering terms in areas including: materials, energy balances, reactions, separations, sustainability, safety, and ethics. Naturally, the dictionary also covers many pertinent terms from the fields of chemistry, physics, biology, and mathematics. Useful entry-level web links are listed and regularly updated on a dedicated companion website to expand the coverage of the dictionary. Comprehensively cross-referenced and complemented by over 60 line drawings, this excellent new volume is the most authoritative dictionary of its kind. It is an essential reference source for students of chemical engineering, for professionals in this field (as well as related disciplines such as applied chemistry, chemical technology, and process engineering), and for anyone with an interest in the subject.
Publisher: OUP Oxford
ISBN: 0191002690
Category : Reference
Languages : en
Pages : 449
Book Description
A Dictionary of Chemical Engineering is one of the latest additions to the market leading Oxford Paperback Reference series. In over 3,400 concise and authoritative A to Z entries, it provides definitions and explanations for chemical engineering terms in areas including: materials, energy balances, reactions, separations, sustainability, safety, and ethics. Naturally, the dictionary also covers many pertinent terms from the fields of chemistry, physics, biology, and mathematics. Useful entry-level web links are listed and regularly updated on a dedicated companion website to expand the coverage of the dictionary. Comprehensively cross-referenced and complemented by over 60 line drawings, this excellent new volume is the most authoritative dictionary of its kind. It is an essential reference source for students of chemical engineering, for professionals in this field (as well as related disciplines such as applied chemistry, chemical technology, and process engineering), and for anyone with an interest in the subject.
Engineering Thermofluids
Author: Mahmoud Massoud
Publisher: Springer Science & Business Media
ISBN: 3540272801
Category : Science
Languages : en
Pages : 1132
Book Description
Thermofluids, while a relatively modern term, is applied to the well-established field of thermal sciences, which is comprised of various intertwined disciplines. Thus mass, momentum, and heat transfer constitute the fundamentals of th- mofluids. This book discusses thermofluids in the context of thermodynamics, single- and two-phase flow, as well as heat transfer associated with single- and two-phase flows. Traditionally, the field of thermal sciences is taught in univer- ties by requiring students to study engineering thermodynamics, fluid mechanics, and heat transfer, in that order. In graduate school, these topics are discussed at more advanced levels. In recent years, however, there have been attempts to in- grate these topics through a unified approach. This approach makes sense as thermal design of widely varied systems ranging from hair dryers to semicond- tor chips to jet engines to nuclear power plants is based on the conservation eq- tions of mass, momentum, angular momentum, energy, and the second law of thermodynamics. While integrating these topics has recently gained popularity, it is hardly a new approach. For example, Bird, Stewart, and Lightfoot in Transport Phenomena, Rohsenow and Choi in Heat, Mass, and Momentum Transfer, El- Wakil, in Nuclear Heat Transport, and Todreas and Kazimi in Nuclear Systems have pursued a similar approach. These books, however, have been designed for advanced graduate level courses. More recently, undergraduate books using an - tegral approach are appearing.
Publisher: Springer Science & Business Media
ISBN: 3540272801
Category : Science
Languages : en
Pages : 1132
Book Description
Thermofluids, while a relatively modern term, is applied to the well-established field of thermal sciences, which is comprised of various intertwined disciplines. Thus mass, momentum, and heat transfer constitute the fundamentals of th- mofluids. This book discusses thermofluids in the context of thermodynamics, single- and two-phase flow, as well as heat transfer associated with single- and two-phase flows. Traditionally, the field of thermal sciences is taught in univer- ties by requiring students to study engineering thermodynamics, fluid mechanics, and heat transfer, in that order. In graduate school, these topics are discussed at more advanced levels. In recent years, however, there have been attempts to in- grate these topics through a unified approach. This approach makes sense as thermal design of widely varied systems ranging from hair dryers to semicond- tor chips to jet engines to nuclear power plants is based on the conservation eq- tions of mass, momentum, angular momentum, energy, and the second law of thermodynamics. While integrating these topics has recently gained popularity, it is hardly a new approach. For example, Bird, Stewart, and Lightfoot in Transport Phenomena, Rohsenow and Choi in Heat, Mass, and Momentum Transfer, El- Wakil, in Nuclear Heat Transport, and Todreas and Kazimi in Nuclear Systems have pursued a similar approach. These books, however, have been designed for advanced graduate level courses. More recently, undergraduate books using an - tegral approach are appearing.