Author: Paolo Di Sia
Publisher: CRC Press
ISBN: 0429650949
Category : Science
Languages : en
Pages : 230
Book Description
Nanobiotechnology is a new interdisciplinary science with revolutionary perspectives arising from the fact that at nanosize the behaviour and characteristics of matter change with respect to ordinary macroscopic dimensions. Nanotechnology is a new way for producing and getting materials, structures and devices with greatly improved or completely new properties and functionalities. This book provides an introductory overview of the nanobiotechnology world along with a general technical framework about mathematical modelling through which we today study the phenomena of charge transport at the nanometer level. Although it is not a purely mathematics or physics book, it introduces the basic mathematical and physical notions that are important and necessary for theory and applications in nanobiotechnology. Therefore, it can be considered an extended formulary of basic and advanced concepts. It can be the starting point for discussions and insights and can be used for further developments in mathematical–physical modelling linked to the nanobiotechnology world. The book is dedicated to all those who follow their ideas in life and pursue their choices with determination and firmness, in a free and independent way.
Mathematics and Physics for Nanotechnology
Author: Paolo Di Sia
Publisher: CRC Press
ISBN: 0429650949
Category : Science
Languages : en
Pages : 230
Book Description
Nanobiotechnology is a new interdisciplinary science with revolutionary perspectives arising from the fact that at nanosize the behaviour and characteristics of matter change with respect to ordinary macroscopic dimensions. Nanotechnology is a new way for producing and getting materials, structures and devices with greatly improved or completely new properties and functionalities. This book provides an introductory overview of the nanobiotechnology world along with a general technical framework about mathematical modelling through which we today study the phenomena of charge transport at the nanometer level. Although it is not a purely mathematics or physics book, it introduces the basic mathematical and physical notions that are important and necessary for theory and applications in nanobiotechnology. Therefore, it can be considered an extended formulary of basic and advanced concepts. It can be the starting point for discussions and insights and can be used for further developments in mathematical–physical modelling linked to the nanobiotechnology world. The book is dedicated to all those who follow their ideas in life and pursue their choices with determination and firmness, in a free and independent way.
Publisher: CRC Press
ISBN: 0429650949
Category : Science
Languages : en
Pages : 230
Book Description
Nanobiotechnology is a new interdisciplinary science with revolutionary perspectives arising from the fact that at nanosize the behaviour and characteristics of matter change with respect to ordinary macroscopic dimensions. Nanotechnology is a new way for producing and getting materials, structures and devices with greatly improved or completely new properties and functionalities. This book provides an introductory overview of the nanobiotechnology world along with a general technical framework about mathematical modelling through which we today study the phenomena of charge transport at the nanometer level. Although it is not a purely mathematics or physics book, it introduces the basic mathematical and physical notions that are important and necessary for theory and applications in nanobiotechnology. Therefore, it can be considered an extended formulary of basic and advanced concepts. It can be the starting point for discussions and insights and can be used for further developments in mathematical–physical modelling linked to the nanobiotechnology world. The book is dedicated to all those who follow their ideas in life and pursue their choices with determination and firmness, in a free and independent way.
The Physics Behind Nanotechnology & Mathematical Modelling
Author: Christopher Oluwatobi Adeogun
Publisher: Eliva Press
ISBN: 9789999311267
Category :
Languages : en
Pages : 0
Book Description
Nanotechnology is a multidisciplinary field that involves the manipulation and control of matter at the nanoscale, typically ranging from 1 to 100 nanometers. At this scale, the properties of materials can significantly differ from their bulk counterparts, leading to unique and enhanced functionalities. The physics behind nanotechnology encompasses various principles and phenomena that govern the behavior of matter at the nanoscale. In this book, we can see how these principles help explain phenomena related to heat transfer, phase transitions, and fluctuations at the nanoscale. Understanding these principles is crucial for designing and optimizing nanoscale devices and systems. One of the fundamental concepts in nanotechnology is quantum mechanics. Quantum mechanics describes the behavior of particles at the atomic and subatomic levels. It provides a framework for understanding phenomena such as wave-particle duality, quantization of energy levels, and tunneling. In nanotechnology, quantum mechanics plays a crucial role in explaining the electronic properties of nanomaterials. Mathematical modelling plays a vital role in understanding and predicting the behavior of nanoscale systems. It provides a quantitative framework for describing complex phenomena and optimizing device performance. Mathematical models in nanotechnology often involve differential equations, statistical methods, and computational simulations.It is crucial for understanding the mechanical properties of nanomaterials. Models based on continuum mechanics, such as elasticity theory and plasticity theory, can predict the behavior of nanomaterials under different loading conditions. These models help in designing materials with desired mechanical properties and optimizing their performance. Mathematical models also aid in the design and optimization of nanoscale devices such as sensors, transistors, and solar cells. By simulating device behavior using mathematical models, researchers can optimize device parameters to achieve desired performance characteristics.
Publisher: Eliva Press
ISBN: 9789999311267
Category :
Languages : en
Pages : 0
Book Description
Nanotechnology is a multidisciplinary field that involves the manipulation and control of matter at the nanoscale, typically ranging from 1 to 100 nanometers. At this scale, the properties of materials can significantly differ from their bulk counterparts, leading to unique and enhanced functionalities. The physics behind nanotechnology encompasses various principles and phenomena that govern the behavior of matter at the nanoscale. In this book, we can see how these principles help explain phenomena related to heat transfer, phase transitions, and fluctuations at the nanoscale. Understanding these principles is crucial for designing and optimizing nanoscale devices and systems. One of the fundamental concepts in nanotechnology is quantum mechanics. Quantum mechanics describes the behavior of particles at the atomic and subatomic levels. It provides a framework for understanding phenomena such as wave-particle duality, quantization of energy levels, and tunneling. In nanotechnology, quantum mechanics plays a crucial role in explaining the electronic properties of nanomaterials. Mathematical modelling plays a vital role in understanding and predicting the behavior of nanoscale systems. It provides a quantitative framework for describing complex phenomena and optimizing device performance. Mathematical models in nanotechnology often involve differential equations, statistical methods, and computational simulations.It is crucial for understanding the mechanical properties of nanomaterials. Models based on continuum mechanics, such as elasticity theory and plasticity theory, can predict the behavior of nanomaterials under different loading conditions. These models help in designing materials with desired mechanical properties and optimizing their performance. Mathematical models also aid in the design and optimization of nanoscale devices such as sensors, transistors, and solar cells. By simulating device behavior using mathematical models, researchers can optimize device parameters to achieve desired performance characteristics.
Mathematics and Physics for Nanotechnology
Author: Paolo Di Sia
Publisher: CRC Press
ISBN: 0429648308
Category : Science
Languages : en
Pages : 171
Book Description
Nanobiotechnology is a new interdisciplinary science with revolutionary perspectives arising from the fact that at nanosize the behaviour and characteristics of matter change with respect to ordinary macroscopic dimensions. Nanotechnology is a new way for producing and getting materials, structures and devices with greatly improved or completely new properties and functionalities. This book provides an introductory overview of the nanobiotechnology world along with a general technical framework about mathematical modelling through which we today study the phenomena of charge transport at the nanometer level. Although it is not a purely mathematics or physics book, it introduces the basic mathematical and physical notions that are important and necessary for theory and applications in nanobiotechnology. Therefore, it can be considered an extended formulary of basic and advanced concepts. It can be the starting point for discussions and insights and can be used for further developments in mathematical–physical modelling linked to the nanobiotechnology world. The book is dedicated to all those who follow their ideas in life and pursue their choices with determination and firmness, in a free and independent way.
Publisher: CRC Press
ISBN: 0429648308
Category : Science
Languages : en
Pages : 171
Book Description
Nanobiotechnology is a new interdisciplinary science with revolutionary perspectives arising from the fact that at nanosize the behaviour and characteristics of matter change with respect to ordinary macroscopic dimensions. Nanotechnology is a new way for producing and getting materials, structures and devices with greatly improved or completely new properties and functionalities. This book provides an introductory overview of the nanobiotechnology world along with a general technical framework about mathematical modelling through which we today study the phenomena of charge transport at the nanometer level. Although it is not a purely mathematics or physics book, it introduces the basic mathematical and physical notions that are important and necessary for theory and applications in nanobiotechnology. Therefore, it can be considered an extended formulary of basic and advanced concepts. It can be the starting point for discussions and insights and can be used for further developments in mathematical–physical modelling linked to the nanobiotechnology world. The book is dedicated to all those who follow their ideas in life and pursue their choices with determination and firmness, in a free and independent way.
Mathematical Treatment of Nanomaterials and Neural Networks
Author: Jia-Bao Liu
Publisher: Frontiers Media SA
ISBN: 2889717976
Category : Science
Languages : en
Pages : 239
Book Description
Publisher: Frontiers Media SA
ISBN: 2889717976
Category : Science
Languages : en
Pages : 239
Book Description
Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology
Author: Felix A Buot
Publisher: World Scientific
ISBN: 9814472972
Category : Technology & Engineering
Languages : en
Pages : 838
Book Description
This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states.
Publisher: World Scientific
ISBN: 9814472972
Category : Technology & Engineering
Languages : en
Pages : 838
Book Description
This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states.
Nano-engineering In Science And Technology: An Introduction To The World Of Nano-design
Author: Michael Rieth
Publisher: World Scientific
ISBN: 9814488100
Category : Science
Languages : en
Pages : 164
Book Description
This important book provides a vivid introduction to the procedures, techniques, problems and difficulties of computational nano-engineering and design. The reader is given step by step the scientific background information, for an easy reconstruction of the explanations. The focus is laid on the molecular dynamics method, which is well suited for explaining the topic to the reader with just a basic knowledge of physics. Results and conclusions of detailed nano-engineering studies are presented in an instructive style. In summary, the book puts readers immediately in a position to take their first steps in the field of computational nano-engineering and design.
Publisher: World Scientific
ISBN: 9814488100
Category : Science
Languages : en
Pages : 164
Book Description
This important book provides a vivid introduction to the procedures, techniques, problems and difficulties of computational nano-engineering and design. The reader is given step by step the scientific background information, for an easy reconstruction of the explanations. The focus is laid on the molecular dynamics method, which is well suited for explaining the topic to the reader with just a basic knowledge of physics. Results and conclusions of detailed nano-engineering studies are presented in an instructive style. In summary, the book puts readers immediately in a position to take their first steps in the field of computational nano-engineering and design.
The ELSI Handbook of Nanotechnology
Author: Chaudhery Mustansar Hussain
Publisher: John Wiley & Sons
ISBN: 1119592968
Category : Technology & Engineering
Languages : en
Pages : 597
Book Description
This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.
Publisher: John Wiley & Sons
ISBN: 1119592968
Category : Technology & Engineering
Languages : en
Pages : 597
Book Description
This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.
Nanostructures
Author: Christophe Jean Delerue
Publisher: Springer Science & Business Media
ISBN: 3662089033
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Provides the theoretical background needed by physicists, engineers and students to simulate nano-devices, semiconductor quantum dots and molecular devices. It presents in a unified way the theoretical concepts, the more recent semi-empirical and ab initio methods, and their application to experiments. The topics include quantum confinement, dielectric and optical properties, non-radiative processes, defects and impurities, and quantum transport. This guidebook not only provides newcomers with an accessible overview (requiring only basic knowledge of quantum mechanics and solid-state physics) but also provides active researchers with practical simulation tools.
Publisher: Springer Science & Business Media
ISBN: 3662089033
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Provides the theoretical background needed by physicists, engineers and students to simulate nano-devices, semiconductor quantum dots and molecular devices. It presents in a unified way the theoretical concepts, the more recent semi-empirical and ab initio methods, and their application to experiments. The topics include quantum confinement, dielectric and optical properties, non-radiative processes, defects and impurities, and quantum transport. This guidebook not only provides newcomers with an accessible overview (requiring only basic knowledge of quantum mechanics and solid-state physics) but also provides active researchers with practical simulation tools.
Mathematics In Science And Technology: Mathematical Methods, Models And Algorithms In Science And Technology - Proceedings Of The Satellite Conference Of Icm 2010
Author: Abul Hasan Siddiqi
Publisher: World Scientific
ISBN: 9814462144
Category : Mathematics
Languages : en
Pages : 558
Book Description
This unique volume presents reviews of research in several important areas of applications of mathematical concepts to science and technology, for example applications of inverse problems and wavelets to real world systems. The book provides a comprehensive overview of current research of several outstanding scholars engaged in diverse fields such as complexity theory, vertex coupling in quantum graphs, mixing of substances by turbulence, network dynamics and architecture, processes with rate — independent hysteresis, numerical analysis of Hamilton Jacobi — Bellman equations, simulations of complex stochastic differential equations, optimal flow control, shape optimal flow control, shape optimization and aircraft designing, mathematics of brain, nanotechnology and DNA structure and mathematical models of environmental problems. The volume also contains contributory talks based on current researches of comparatively young researchers participating in the conference.
Publisher: World Scientific
ISBN: 9814462144
Category : Mathematics
Languages : en
Pages : 558
Book Description
This unique volume presents reviews of research in several important areas of applications of mathematical concepts to science and technology, for example applications of inverse problems and wavelets to real world systems. The book provides a comprehensive overview of current research of several outstanding scholars engaged in diverse fields such as complexity theory, vertex coupling in quantum graphs, mixing of substances by turbulence, network dynamics and architecture, processes with rate — independent hysteresis, numerical analysis of Hamilton Jacobi — Bellman equations, simulations of complex stochastic differential equations, optimal flow control, shape optimal flow control, shape optimization and aircraft designing, mathematics of brain, nanotechnology and DNA structure and mathematical models of environmental problems. The volume also contains contributory talks based on current researches of comparatively young researchers participating in the conference.
Molecular Modelling and Synthesis of Nanomaterials
Author: Ihsan Boustani
Publisher: Springer Nature
ISBN: 3030327264
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
This book presents nanomaterials as predicted by computational modelling and numerical simulation tools, and confirmed by modern experimental techniques. It begins by summarizing basic theoretical methods, then giving both a theoretical and experimental treatment of how alkali metal clusters develop into nanostructures, as influenced by the cluster's "magic number" of atoms. The book continues with a discussion of atomic clusters and nanostructures, focusing primarily on boron and carbon, exploring, in detail, the one-, two-, and three-dimensional structures of boron and carbon, and describing their myriad potential applications in nanotechnology, from nanocoating and nanosensing to nanobatteries with high borophene capacity. The broad discussion of computational modelling as well as the specific applications to boron and carbon, make this book an essential reference resource for materials scientists in this field of research.
Publisher: Springer Nature
ISBN: 3030327264
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
This book presents nanomaterials as predicted by computational modelling and numerical simulation tools, and confirmed by modern experimental techniques. It begins by summarizing basic theoretical methods, then giving both a theoretical and experimental treatment of how alkali metal clusters develop into nanostructures, as influenced by the cluster's "magic number" of atoms. The book continues with a discussion of atomic clusters and nanostructures, focusing primarily on boron and carbon, exploring, in detail, the one-, two-, and three-dimensional structures of boron and carbon, and describing their myriad potential applications in nanotechnology, from nanocoating and nanosensing to nanobatteries with high borophene capacity. The broad discussion of computational modelling as well as the specific applications to boron and carbon, make this book an essential reference resource for materials scientists in this field of research.