The Physical Basis of Burn-up Measurement in Pebble Bed Modular Reactor (PMBR). PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Physical Basis of Burn-up Measurement in Pebble Bed Modular Reactor (PMBR). PDF full book. Access full book title The Physical Basis of Burn-up Measurement in Pebble Bed Modular Reactor (PMBR). by Ntsoaki Cecilia Mohlabai. Download full books in PDF and EPUB format.

The Physical Basis of Burn-up Measurement in Pebble Bed Modular Reactor (PMBR).

The Physical Basis of Burn-up Measurement in Pebble Bed Modular Reactor (PMBR). PDF Author: Ntsoaki Cecilia Mohlabai
Publisher:
ISBN:
Category : Nuclear reactors
Languages : en
Pages : 0

Book Description


The Physical Basis of Burn-up Measurement in Pebble Bed Modular Reactor (PMBR).

The Physical Basis of Burn-up Measurement in Pebble Bed Modular Reactor (PMBR). PDF Author: Ntsoaki Cecilia Mohlabai
Publisher:
ISBN:
Category : Nuclear reactors
Languages : en
Pages : 0

Book Description


Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the 'standard' UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

On-line Interrogation of Pebble Bed Reactor Fuel Using Passive Gamma-ray Spectometry

On-line Interrogation of Pebble Bed Reactor Fuel Using Passive Gamma-ray Spectometry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Pebble Bed Reactor (PBR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor. In addition to its inherently safe design, a unique feature of this reactor is its multipass fuel cycle in which graphite fuel pebbles (of varying enrichment) are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burnup limit (8̃0,000-100,000 MWD/MTU). Unlike the situation with conventional light water reactors (LWRs), depending solely on computational methods to perform in-core fuel management will be highly inaccurate. As a result, an on-line measurement approach becomes the only accurate method to assess whether a particular pebble has reached its end-of-life burnup limit. In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry assay as an approach for on-line interrogation of PBR fuel for the simultaneous determination of burnup and enrichment on a pebble-by-pebble basis. Due to the unavailability of irradiated or fresh pebbles, Monte Carlo simulations were used to study the gamma-ray spectra of the PBR fuel at various levels of burnup. A pebble depletion calculation was performed using the ORIGEN code, which yielded the gamma-ray source term that was introduced into the input of an MCNP simulation. The MCNP simulation assumed the use of a high-purity coaxial germanium detector. Due to the lack of one-group high temperature reactor cross sections for ORIGEN, a heterogeneous MCNP model was developed to describe a typical PBR core. Subsequently, the code MONTEBURNS was used to couple the MCNP model and ORIGEN. This approach allowed the development of the burnup-dependent, one-group spectral-averaged PBR cross sections to be used in the ORIGEN pebble depletion calculation. Based on the above studies, a relative approach for performing the measurements was established. The approach is based on using the relative activities of Np-239/I-132 in combination with the relative activities of Cs-134/Co-60 (Co-60 is introduced as a dopant) to yield the burnup and enrichment for each pebble. Furthermore, a direct consequence of the relative approach is the ability to apply a self-calibration scheme using the multiple gamma lines of Ba-La-140 to establish the relative efficiency curve of the HPGe detector. An assessment of the expected uncertainty components in this approach showed that a maximum uncertainty of less than 5% should be feasible. To confirm the above findings, gamma-ray scans were performed on irradiated PULSTAR reactor fuel assemblies at North Carolina Sate University. The measurements used a 40% efficient n-type coaxial HPGe detector connected to an ORTEC DSPECplus digital Gamma-Ray Spectrometer, and a data acquisition computer.

Reactor Burn-up Physics

Reactor Burn-up Physics PDF Author: International Atomic Energy Agency
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 312

Book Description


The Political Economy of Clean Energy Transitions

The Political Economy of Clean Energy Transitions PDF Author: Douglas Arent
Publisher: Oxford University Press
ISBN: 0198802242
Category : Business & Economics
Languages : en
Pages : 631

Book Description
A volume on the political economy of clean energy transition in developed and developing regions, with a focus on the issues that different countries face as they transition from fossil fuels to lower carbon technologies.

Hydrogen Production from Nuclear Energy

Hydrogen Production from Nuclear Energy PDF Author: Greg F Naterer
Publisher: Springer Science & Business Media
ISBN: 1447149386
Category : Technology & Engineering
Languages : en
Pages : 506

Book Description
With the resurgence of nuclear power around the world, and the increasingly important role of hydrogen as a clean energy carrier, the utilization of nuclear energy for large-scale hydrogen production will have a key role in a sustainable energy future. Co-generation of both electricity and hydrogen from nuclear plants will become increasingly attractive. It enables load leveling together with renewable energy and storage of electricity in the form of hydrogen, when electricity prices and demand are lowest at off-peak hours of nuclear plants, such as overnight. Hydrogen Production from Nuclear Energy provides an overview of the latest developments and methods of nuclear based hydrogen production, including electrolysis and thermochemical cycles. Particular focus is given to thermochemical water splitting by the copper-chlorine and sulphur-based cycles. Cycle configurations, equipment design, modeling and implementation issues are presented and discussed. The book provides the reader with an overview of the key enabling technologies towards the design and industrialization of hydrogen plants that are co-located and linked with nuclear plants in the future. The book includes illustrations of technology developments, tables that summarize key features and results, overviews of recent advances and new methods of nuclear hydrogen production. The latest results from leading authorities in the fields will be presented, including efficiencies, costs, equipment design, and modeling.

Handbook of Small Modular Nuclear Reactors

Handbook of Small Modular Nuclear Reactors PDF Author: Daniel T. Ingersoll
Publisher: Woodhead Publishing
ISBN: 0128239174
Category : Technology & Engineering
Languages : en
Pages : 648

Book Description
Handbook of Small Modular Nuclear Reactors, Second Edition is a fully updated comprehensive reference on Small Modular Reactors (SMRs), which reflects the latest research and technological advances in the field from the last five years. Editors Daniel T. Ingersoll and Mario D. Carelli, along with their team of expert contributors, combine their wealth of collective experience to update this comprehensive handbook that provides the reader with all required knowledge on SMRs, expanding on the rapidly growing interest and development of SMRs around the globe. This book begins with an introduction to SMRs for power generation, an overview of international developments, and an analysis of Integral Pressurized Water Reactors as a popular class of SMRs. The second part of the book is dedicated to SMR technologies, including physics, components, I&C, human-system interfaces and safety aspects. Part three discusses the implementation of SMRs, covering economic factors, construction methods, hybrid energy systems and licensing considerations. The fourth part of the book provides an in-depth analysis of SMR R&D and deployment of SMRs within eight countries, including the United States, Republic of Korea, Russia, China, Argentina, and Japan. This edition includes brand new content on the United Kingdom and Canada, where interests in SMRs have increased considerably since the first edition was published. The final part of the book adds a new analysis of the global SMR market and concludes with a perspective on SMR benefits to developing economies. This authoritative and practical handbook benefits engineers, designers, operators, and regulators working in nuclear energy, as well as academics and graduate students researching nuclear reactor technologies. Presents the latest research on SMR technologies and global developments Includes new case study chapters on the United Kingdom and Canada and a chapter on global SMR markets Discusses new technologies such as floating SMRs and molten salt SMRs

Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors

Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors PDF Author: International Atomic Energy Agency
Publisher: IAEA
ISBN:
Category : Business & Economics
Languages : en
Pages : 100

Book Description
The reactors around the world have produced more than 2000 tonnes of plutonium, contained in spent fuel or as separated forms through reprocessing. Disposition of fissile materials has become a primary concern of nuclear non-proliferation efforts worldwide. There is a significant interest in IAEA Member States to develop proliferation resistant nuclear fuel cycles for incineration of plutonium such as inert matrix fuels (IMFs). This publication reviews the status of potential IMF candidates and describes several identified candidate materials for both fast and thermal reactors: MgO, ZrO2, SiC, Zr alloy, SiAl, ZrN; some of these have undergone test irradiations and post irradiation examination. Also discussed are modelling of IMF fuel performance and safety analysis. System studies have identified strategies for both implementation of IMF fuel as homogeneous or heterogeneous phases, as assemblies or core loadings and in existing reactors in the shorter term, as well as in new reactors in the longer term.

The Nuclear Fuel Cycle

The Nuclear Fuel Cycle PDF Author: Nicholas Tsoulfanidis
Publisher:
ISBN: 9781523116249
Category : Nuclear fuels
Languages : en
Pages : 463

Book Description


Nuclear Corrosion Science and Engineering

Nuclear Corrosion Science and Engineering PDF Author: Damien Feron
Publisher: Elsevier
ISBN: 085709534X
Category : Technology & Engineering
Languages : en
Pages : 1073

Book Description
Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities. Initial sections introduce the complex field of nuclear corrosion science, with detailed chapters on the different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them. This is complemented by reviews of monitoring and control methodologies, as well as modelling and lifetime prediction approaches. Given that corrosion is an applied science, the final sections review corrosion issues across the range of current and next-generation nuclear reactors, and across such nuclear applications as fuel reprocessing facilities, radioactive waste storage and geological disposal systems. With its distinguished editor and international team of expert contributors, Nuclear corrosion science and engineering is an invaluable reference for nuclear metallurgists, materials scientists and engineers, as well as nuclear facility operators, regulators and consultants, and researchers and academics in this field. Comprehensively reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities Chapters assess different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them Considers monitoring and control methodologies, as well as modelling and lifetime prediction approaches