The Nystrom Method in Electromagnetics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Nystrom Method in Electromagnetics PDF full book. Access full book title The Nystrom Method in Electromagnetics by Mei Song Tong. Download full books in PDF and EPUB format.

The Nystrom Method in Electromagnetics

The Nystrom Method in Electromagnetics PDF Author: Mei Song Tong
Publisher: John Wiley & Sons
ISBN: 1119284848
Category : Science
Languages : en
Pages : 522

Book Description
A comprehensive, step-by-step reference to the Nyström Method for solving Electromagnetic problems using integral equations Computational electromagnetics studies the numerical methods or techniques that solve electromagnetic problems by computer programming. Currently, there are mainly three numerical methods for electromagnetic problems: the finite-difference time-domain (FDTD), finite element method (FEM), and integral equation methods (IEMs). In the IEMs, the method of moments (MoM) is the most widely used method, but much attention is being paid to the Nyström method as another IEM, because it possesses some unique merits which the MoM lacks. This book focuses on that method—providing information on everything that students and professionals working in the field need to know. Written by the top researchers in electromagnetics, this complete reference book is a consolidation of advances made in the use of the Nyström method for solving electromagnetic integral equations. It begins by introducing the fundamentals of the electromagnetic theory and computational electromagnetics, before proceeding to illustrate the advantages unique to the Nyström method through rigorous worked out examples and equations. Key topics include quadrature rules, singularity treatment techniques, applications to conducting and penetrable media, multiphysics electromagnetic problems, time-domain integral equations, inverse scattering problems and incorporation with multilevel fast multiple algorithm. Systematically introduces the fundamental principles, equations, and advantages of the Nyström method for solving electromagnetic problems Features the unique benefits of using the Nyström method through numerical comparisons with other numerical and analytical methods Covers a broad range of application examples that will point the way for future research The Nystrom Method in Electromagnetics is ideal for graduate students, senior undergraduates, and researchers studying engineering electromagnetics, computational methods, and applied mathematics. Practicing engineers and other industry professionals working in engineering electromagnetics and engineering mathematics will also find it to be incredibly helpful.

The Nystrom Method in Electromagnetics

The Nystrom Method in Electromagnetics PDF Author: Mei Song Tong
Publisher: John Wiley & Sons
ISBN: 1119284848
Category : Science
Languages : en
Pages : 522

Book Description
A comprehensive, step-by-step reference to the Nyström Method for solving Electromagnetic problems using integral equations Computational electromagnetics studies the numerical methods or techniques that solve electromagnetic problems by computer programming. Currently, there are mainly three numerical methods for electromagnetic problems: the finite-difference time-domain (FDTD), finite element method (FEM), and integral equation methods (IEMs). In the IEMs, the method of moments (MoM) is the most widely used method, but much attention is being paid to the Nyström method as another IEM, because it possesses some unique merits which the MoM lacks. This book focuses on that method—providing information on everything that students and professionals working in the field need to know. Written by the top researchers in electromagnetics, this complete reference book is a consolidation of advances made in the use of the Nyström method for solving electromagnetic integral equations. It begins by introducing the fundamentals of the electromagnetic theory and computational electromagnetics, before proceeding to illustrate the advantages unique to the Nyström method through rigorous worked out examples and equations. Key topics include quadrature rules, singularity treatment techniques, applications to conducting and penetrable media, multiphysics electromagnetic problems, time-domain integral equations, inverse scattering problems and incorporation with multilevel fast multiple algorithm. Systematically introduces the fundamental principles, equations, and advantages of the Nyström method for solving electromagnetic problems Features the unique benefits of using the Nyström method through numerical comparisons with other numerical and analytical methods Covers a broad range of application examples that will point the way for future research The Nystrom Method in Electromagnetics is ideal for graduate students, senior undergraduates, and researchers studying engineering electromagnetics, computational methods, and applied mathematics. Practicing engineers and other industry professionals working in engineering electromagnetics and engineering mathematics will also find it to be incredibly helpful.

An Introduction to the Locally-corrected Nyström Method

An Introduction to the Locally-corrected Nyström Method PDF Author: Andrew F. Peterson
Publisher: Morgan & Claypool Publishers
ISBN: 1608452999
Category : Computers
Languages : en
Pages : 116

Book Description
This lecture provides a tutorial introduction to the Nyström and locally-corrected Nyström methods when used for the numerical solutions of the common integral equations of two-dimensional electromagnetic fields. These equations exhibit kernel singularities that complicate their numerical solution. Classical and generalized Gaussian quadrature rules are reviewed. The traditional Nyström method is summarized, and applied to the magnetic field equation for illustration. To obtain high order accuracy in the numerical results, the locally-corrected Nyström method is developed and applied to both the electric field and magnetic field equations. In the presence of target edges, where current or charge density singularities occur, the method must be extended through the use of appropriate singular basis functions and special quadrature rules. This extension is also described. Table of Contents: Introduction / Classical Quadrature Rules / The Classical Nyström Method / The Locally-Corrected Nyström Method / Generalized Gaussian Quadrature / LCN Treatment of Edge Singularities

An Introduction to the Locally Corrected Nystrom Method

An Introduction to the Locally Corrected Nystrom Method PDF Author: Andrew Peterson
Publisher: Springer Nature
ISBN: 3031017102
Category : Technology & Engineering
Languages : en
Pages : 103

Book Description
This lecture provides a tutorial introduction to the Nyström and locally-corrected Nyström methods when used for the numerical solutions of the common integral equations of two-dimensional electromagnetic fields. These equations exhibit kernel singularities that complicate their numerical solution. Classical and generalized Gaussian quadrature rules are reviewed. The traditional Nyström method is summarized, and applied to the magnetic field equation for illustration. To obtain high order accuracy in the numerical results, the locally-corrected Nyström method is developed and applied to both the electric field and magnetic field equations. In the presence of target edges, where current or charge density singularities occur, the method must be extended through the use of appropriate singular basis functions and special quadrature rules. This extension is also described. Table of Contents: Introduction / Classical Quadrature Rules / The Classical Nyström Method / The Locally-Corrected Nyström Method / Generalized Gaussian Quadrature / LCN Treatment of Edge Singularities

The Nystrom Method in Electromagnetics

The Nystrom Method in Electromagnetics PDF Author: Mei Song Tong
Publisher: John Wiley & Sons
ISBN: 1119284880
Category : Science
Languages : en
Pages : 528

Book Description
A comprehensive, step-by-step reference to the Nyström Method for solving Electromagnetic problems using integral equations Computational electromagnetics studies the numerical methods or techniques that solve electromagnetic problems by computer programming. Currently, there are mainly three numerical methods for electromagnetic problems: the finite-difference time-domain (FDTD), finite element method (FEM), and integral equation methods (IEMs). In the IEMs, the method of moments (MoM) is the most widely used method, but much attention is being paid to the Nyström method as another IEM, because it possesses some unique merits which the MoM lacks. This book focuses on that method—providing information on everything that students and professionals working in the field need to know. Written by the top researchers in electromagnetics, this complete reference book is a consolidation of advances made in the use of the Nyström method for solving electromagnetic integral equations. It begins by introducing the fundamentals of the electromagnetic theory and computational electromagnetics, before proceeding to illustrate the advantages unique to the Nyström method through rigorous worked out examples and equations. Key topics include quadrature rules, singularity treatment techniques, applications to conducting and penetrable media, multiphysics electromagnetic problems, time-domain integral equations, inverse scattering problems and incorporation with multilevel fast multiple algorithm. Systematically introduces the fundamental principles, equations, and advantages of the Nyström method for solving electromagnetic problems Features the unique benefits of using the Nyström method through numerical comparisons with other numerical and analytical methods Covers a broad range of application examples that will point the way for future research The Nystrom Method in Electromagnetics is ideal for graduate students, senior undergraduates, and researchers studying engineering electromagnetics, computational methods, and applied mathematics. Practicing engineers and other industry professionals working in engineering electromagnetics and engineering mathematics will also find it to be incredibly helpful.

Computational Electromagnetics

Computational Electromagnetics PDF Author: Raj Mittra
Publisher: Springer Science & Business Media
ISBN: 1461443822
Category : Technology & Engineering
Languages : en
Pages : 707

Book Description
Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.

Proceedings of the 1992 URSI International Symposium on Electromagnetic Theory

Proceedings of the 1992 URSI International Symposium on Electromagnetic Theory PDF Author:
Publisher:
ISBN:
Category : Electromagnetic theory
Languages : en
Pages : 620

Book Description


Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Scattering from Chiral Objects

Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Scattering from Chiral Objects PDF Author: Andrew Peterson
Publisher:
ISBN: 9788303101716
Category : Electrical engineering
Languages : en
Pages : 0

Book Description
This lecture provides a tutorial introduction to the Nyström and locally-corrected Nyström methods when used for the numerical solutions of the common integral equations of two-dimensional electromagnetic fields. These equations exhibit kernel singularities that complicate their numerical solution. Classical and generalized Gaussian quadrature rules are reviewed. The traditional Nyström method is summarized, and applied to the magnetic field equation for illustration. To obtain high order accuracy in the numerical results, the locally-corrected Nyström method is developed and applied to both the electric field and magnetic field equations. In the presence of target edges, where current or charge density singularities occur, the method must be extended through the use of appropriate singular basis functions and special quadrature rules. This extension is also described. Table of Contents: Introduction / Classical Quadrature Rules / The Classical Nyström Method / The Locally-Corrected Nyström Method / Generalized Gaussian Quadrature / LCN Treatment of Edge Singularities.

Computational Methods for Electromagnetic Phenomena

Computational Methods for Electromagnetic Phenomena PDF Author: Wei Cai
Publisher: Cambridge University Press
ISBN: 1107021057
Category : Mathematics
Languages : en
Pages : 463

Book Description
The first book of its kind to cover a wide range of computational methods for electromagnetic phenomena, from atomistic to continuum scales, this integrated and balanced treatment of mathematical formulations, algorithms and the underlying physics enables us to engage in innovative and advanced interdisciplinary computational research.

Generalized Moment Methods in Electromagnetics

Generalized Moment Methods in Electromagnetics PDF Author: Johnson J. H. Wang
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 584

Book Description
Now available for the first time in print are the new concepts and insights developed over the last three decades in the broad class of computational techniques called the methods of moment. Designed to serve as both a professional reference and graduate-level textbook, it will be useful in calculations for electromagnetic problems related to, among others, antennas, scattering microwaves, radars and imaging. Also included are problems for students, with the solutions available.

Numerical Methods in Electromagnetism

Numerical Methods in Electromagnetism PDF Author: M. V.K. Chari
Publisher: Academic Press
ISBN: 012615760X
Category : Mathematics
Languages : en
Pages : 783

Book Description
Electromagnetics is the foundation of our electric technology. It describes the fundamental principles upon which electricity is generated and used. This includes electric machines, high voltage transmission, telecommunication, radar, and recording and digital computing. Numerical Methods in Electromagnetism will serve both as an introductory text for graduate students and as a reference book for professional engineers and researchers. This book leads the uninitiated into the realm of numerical methods for solving electromagnetic field problems by examples and illustrations. Detailed descriptions of advanced techniques are also included for the benefit of working engineers and research students. Comprehensive descriptions of numerical methods In-depth introduction to finite differences, finite elements, and integral equations Illustrations and applications of linear and nonlinear solutions for multi-dimensional analysis Numerical examples to facilitate understanding of the methods Appendices for quick reference of mathematical and numerical methods employed