Author: James G. Miller
Publisher:
ISBN:
Category : Biology
Languages : en
Pages : 120
Book Description
Living Systems
Author: James G. Miller
Publisher:
ISBN:
Category : Biology
Languages : en
Pages : 120
Book Description
Publisher:
ISBN:
Category : Biology
Languages : en
Pages : 120
Book Description
Information and Living Systems
Author: George Terzis
Publisher: MIT Press
ISBN: 0262201747
Category : Business & Economics
Languages : en
Pages : 459
Book Description
The informational nature of biological organization, at levels from the genetic and epigenetic to the cognitive and linguistic. Information shapes biological organization in fundamental ways and at every organizational level. Because organisms use information--including DNA codes, gene expression, and chemical signaling--to construct, maintain, repair, and replicate themselves, it would seem only natural to use information-related ideas in our attempts to understand the general nature of living systems, the causality by which they operate, the difference between living and inanimate matter, and the emergence, in some biological species, of cognition, emotion, and language. And yet philosophers and scientists have been slow to do so. This volume fills that gap. Information and Living Systems offers a collection of original chapters in which scientists and philosophers discuss the informational nature of biological organization at levels ranging from the genetic to the cognitive and linguistic. The chapters examine not only familiar information-related ideas intrinsic to the biological sciences but also broader information-theoretic perspectives used to interpret their significance. The contributors represent a range of disciplines, including anthropology, biology, chemistry, cognitive science, information theory, philosophy, psychology, and systems theory, thus demonstrating the deeply interdisciplinary nature of the volume's bioinformational theme.
Publisher: MIT Press
ISBN: 0262201747
Category : Business & Economics
Languages : en
Pages : 459
Book Description
The informational nature of biological organization, at levels from the genetic and epigenetic to the cognitive and linguistic. Information shapes biological organization in fundamental ways and at every organizational level. Because organisms use information--including DNA codes, gene expression, and chemical signaling--to construct, maintain, repair, and replicate themselves, it would seem only natural to use information-related ideas in our attempts to understand the general nature of living systems, the causality by which they operate, the difference between living and inanimate matter, and the emergence, in some biological species, of cognition, emotion, and language. And yet philosophers and scientists have been slow to do so. This volume fills that gap. Information and Living Systems offers a collection of original chapters in which scientists and philosophers discuss the informational nature of biological organization at levels ranging from the genetic to the cognitive and linguistic. The chapters examine not only familiar information-related ideas intrinsic to the biological sciences but also broader information-theoretic perspectives used to interpret their significance. The contributors represent a range of disciplines, including anthropology, biology, chemistry, cognitive science, information theory, philosophy, psychology, and systems theory, thus demonstrating the deeply interdisciplinary nature of the volume's bioinformational theme.
Biological Processes in Living Systems
Author: C. H. Waddington
Publisher: Routledge
ISBN: 1351297147
Category : Science
Languages : en
Pages : 334
Book Description
Biological Processes in Living Systems is the fourth and final volume of the Toward a Theoretical Biology series. It contains essays that deal in detail with particular biological processes: morphogenesis of pattern, the development of neuronal networks, evolutionary processes, and others. The main thrust of this volume brings relevance to the general underlying nature of living systems. Faced with trying to understand how the complexity of molecular microstates leads to the relative simplicity of phenome structures, Waddington-on behalf of his colleagues-stresses on the structure of language as a paradigm for a theory of general biology. This is language in an imperative mood: a set of symbols, organized by some form of generative grammar, making possible the conveyance of commands for action to produce effects on the surroundings of the emitting and the receiving entities. "Biology," he writes, "is concerned with algorithm and program." Among the contributions in this volume are: "The Riemann-Hugoniot Catastrophe and van der Waals Equation," David H. Fowler; "Differential Equations for the Heartbeat and Nerve Impulse," E. Christopher Zeeman; "Structuralism and Biology," Rene Thom; "The Concept of Positional Information and Pattern Formation," Lewis Wolpert; "Pattern Formation in Fibroblast Cultures," Tom Elsdale; "Form and Information," C. H. Waddington; "Organizational Principles for Theoretical Neurophysiology," Michael A. Arbib; "Stochastic Models of Neuroelectric Activity," Jack D. Cowan. Biological Processes in Living Systems is a pioneering volume by recognized leaders in an ever-growing field.
Publisher: Routledge
ISBN: 1351297147
Category : Science
Languages : en
Pages : 334
Book Description
Biological Processes in Living Systems is the fourth and final volume of the Toward a Theoretical Biology series. It contains essays that deal in detail with particular biological processes: morphogenesis of pattern, the development of neuronal networks, evolutionary processes, and others. The main thrust of this volume brings relevance to the general underlying nature of living systems. Faced with trying to understand how the complexity of molecular microstates leads to the relative simplicity of phenome structures, Waddington-on behalf of his colleagues-stresses on the structure of language as a paradigm for a theory of general biology. This is language in an imperative mood: a set of symbols, organized by some form of generative grammar, making possible the conveyance of commands for action to produce effects on the surroundings of the emitting and the receiving entities. "Biology," he writes, "is concerned with algorithm and program." Among the contributions in this volume are: "The Riemann-Hugoniot Catastrophe and van der Waals Equation," David H. Fowler; "Differential Equations for the Heartbeat and Nerve Impulse," E. Christopher Zeeman; "Structuralism and Biology," Rene Thom; "The Concept of Positional Information and Pattern Formation," Lewis Wolpert; "Pattern Formation in Fibroblast Cultures," Tom Elsdale; "Form and Information," C. H. Waddington; "Organizational Principles for Theoretical Neurophysiology," Michael A. Arbib; "Stochastic Models of Neuroelectric Activity," Jack D. Cowan. Biological Processes in Living Systems is a pioneering volume by recognized leaders in an ever-growing field.
Robustness and Evolvability in Living Systems
Author: Andreas Wagner
Publisher: Princeton University Press
ISBN: 0691134049
Category : Science
Languages : en
Pages : 383
Book Description
All living things are remarkably complex, yet their DNA is unstable, undergoing countless random mutations over generations. Despite this instability, most animals do not grow two heads or die, plants continue to thrive, and bacteria continue to divide. Robustness and Evolvability in Living Systems tackles this perplexing paradox. The book explores why genetic changes do not cause organisms to fail catastrophically and how evolution shapes organisms' robustness. Andreas Wagner looks at this problem from the ground up, starting with the alphabet of DNA, the genetic code, RNA, and protein molecules, moving on to genetic networks and embryonic development, and working his way up to whole organisms. He then develops an evolutionary explanation for robustness. Wagner shows how evolution by natural selection preferentially finds and favors robust solutions to the problems organisms face in surviving and reproducing. Such robustness, he argues, also enhances the potential for future evolutionary innovation. Wagner also argues that robustness has less to do with organisms having plenty of spare parts (the redundancy theory that has been popular) and more to do with the reality that mutations can change organisms in ways that do not substantively affect their fitness. Unparalleled in its field, this book offers the most detailed analysis available of all facets of robustness within organisms. It will appeal not only to biologists but also to engineers interested in the design of robust systems and to social scientists concerned with robustness in human communities and populations.
Publisher: Princeton University Press
ISBN: 0691134049
Category : Science
Languages : en
Pages : 383
Book Description
All living things are remarkably complex, yet their DNA is unstable, undergoing countless random mutations over generations. Despite this instability, most animals do not grow two heads or die, plants continue to thrive, and bacteria continue to divide. Robustness and Evolvability in Living Systems tackles this perplexing paradox. The book explores why genetic changes do not cause organisms to fail catastrophically and how evolution shapes organisms' robustness. Andreas Wagner looks at this problem from the ground up, starting with the alphabet of DNA, the genetic code, RNA, and protein molecules, moving on to genetic networks and embryonic development, and working his way up to whole organisms. He then develops an evolutionary explanation for robustness. Wagner shows how evolution by natural selection preferentially finds and favors robust solutions to the problems organisms face in surviving and reproducing. Such robustness, he argues, also enhances the potential for future evolutionary innovation. Wagner also argues that robustness has less to do with organisms having plenty of spare parts (the redundancy theory that has been popular) and more to do with the reality that mutations can change organisms in ways that do not substantively affect their fitness. Unparalleled in its field, this book offers the most detailed analysis available of all facets of robustness within organisms. It will appeal not only to biologists but also to engineers interested in the design of robust systems and to social scientists concerned with robustness in human communities and populations.
The Physics of Living Systems
Author: Fabrizio Cleri
Publisher: Springer
ISBN: 3319306472
Category : Science
Languages : en
Pages : 635
Book Description
In this book, physics in its many aspects (thermodynamics, mechanics, electricity, fluid dynamics) is the guiding light on a fascinating journey through biological systems, providing ideas, examples and stimulating reflections for undergraduate physics, chemistry and life-science students, as well as for anyone interested in the frontiers between physics and biology. Rather than introducing a lot of new information, it encourages young students to use their recently acquired knowledge to start seeing the physics behind the biology. As an undergraduate textbook in introductory biophysics, it includes the necessary background and tools, including exercises and appendices, to form a progressive course. In this case, the chapters can be used in the order proposed, possibly split between two semesters. The book is also an absorbing read for researchers in the life sciences who wish to refresh or go deeper into the physics concepts gleaned in their early years of scientific training. Less physics-oriented readers might want to skip the first chapter, as well as all the "gray boxes" containing the more formal developments, and create their own á-la-carte menu of chapters.
Publisher: Springer
ISBN: 3319306472
Category : Science
Languages : en
Pages : 635
Book Description
In this book, physics in its many aspects (thermodynamics, mechanics, electricity, fluid dynamics) is the guiding light on a fascinating journey through biological systems, providing ideas, examples and stimulating reflections for undergraduate physics, chemistry and life-science students, as well as for anyone interested in the frontiers between physics and biology. Rather than introducing a lot of new information, it encourages young students to use their recently acquired knowledge to start seeing the physics behind the biology. As an undergraduate textbook in introductory biophysics, it includes the necessary background and tools, including exercises and appendices, to form a progressive course. In this case, the chapters can be used in the order proposed, possibly split between two semesters. The book is also an absorbing read for researchers in the life sciences who wish to refresh or go deeper into the physics concepts gleaned in their early years of scientific training. Less physics-oriented readers might want to skip the first chapter, as well as all the "gray boxes" containing the more formal developments, and create their own á-la-carte menu of chapters.
Designing Regenerative Cultures
Author: Daniel Christian Wahl
Publisher: Triarchy Press
ISBN: 1909470791
Category : Business & Economics
Languages : en
Pages : 291
Book Description
This is a ‘Whole Earth Catalog’ for the 21st century: an impressive and wide-ranging analysis of what’s wrong with our societies, organizations, ideologies, worldviews and cultures – and how to put them right. The book covers the finance system, agriculture, design, ecology, economy, sustainability, organizations and society at large.
Publisher: Triarchy Press
ISBN: 1909470791
Category : Business & Economics
Languages : en
Pages : 291
Book Description
This is a ‘Whole Earth Catalog’ for the 21st century: an impressive and wide-ranging analysis of what’s wrong with our societies, organizations, ideologies, worldviews and cultures – and how to put them right. The book covers the finance system, agriculture, design, ecology, economy, sustainability, organizations and society at large.
The Systems View of Life
Author: Fritjof Capra
Publisher: Cambridge University Press
ISBN: 1107011361
Category : Business & Economics
Languages : en
Pages : 513
Book Description
The first volume to integrate life's biological, cognitive, social, and ecological dimensions into a single, coherent framework.
Publisher: Cambridge University Press
ISBN: 1107011361
Category : Business & Economics
Languages : en
Pages : 513
Book Description
The first volume to integrate life's biological, cognitive, social, and ecological dimensions into a single, coherent framework.
Information Processing And Living Systems
Author: Vladimir B Bajic
Publisher: World Scientific
ISBN: 1783260270
Category : Science
Languages : en
Pages : 799
Book Description
Information processing and information flow occur in the course of an organism's development and throughout its lifespan. Organisms do not exist in isolation, but interact with each other constantly within a complex ecosystem. The relationships between organisms, such as those between prey or predator, host and parasite, and between mating partners, are complex and multidimensional. In all cases, there is constant communication and information flow at many levels.This book focuses on information processing by life forms and the use of information technology in understanding them. Readers are first given a comprehensive overview of biocomputing before navigating the complex terrain of natural processing of biological information using physiological and analogous computing models. The remainder of the book deals with “artificial” processing of biological information as a human endeavor in order to derive new knowledge and gain insight into life forms and their functioning. Specific innovative applications and tools for biological discovery are provided as the link and complement to biocomputing.Since “artificial” processing of biological information is complementary to natural processing, a better understanding of the former helps us improve the latter. Consequently, readers are exposed to both domains and, when dealing with biological problems of their interest, will be better equipped to grasp relevant ideas.
Publisher: World Scientific
ISBN: 1783260270
Category : Science
Languages : en
Pages : 799
Book Description
Information processing and information flow occur in the course of an organism's development and throughout its lifespan. Organisms do not exist in isolation, but interact with each other constantly within a complex ecosystem. The relationships between organisms, such as those between prey or predator, host and parasite, and between mating partners, are complex and multidimensional. In all cases, there is constant communication and information flow at many levels.This book focuses on information processing by life forms and the use of information technology in understanding them. Readers are first given a comprehensive overview of biocomputing before navigating the complex terrain of natural processing of biological information using physiological and analogous computing models. The remainder of the book deals with “artificial” processing of biological information as a human endeavor in order to derive new knowledge and gain insight into life forms and their functioning. Specific innovative applications and tools for biological discovery are provided as the link and complement to biocomputing.Since “artificial” processing of biological information is complementary to natural processing, a better understanding of the former helps us improve the latter. Consequently, readers are exposed to both domains and, when dealing with biological problems of their interest, will be better equipped to grasp relevant ideas.
Principles of Biology
Author: Lisa Bartee
Publisher:
ISBN: 9781636350417
Category :
Languages : en
Pages :
Book Description
The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
Publisher:
ISBN: 9781636350417
Category :
Languages : en
Pages :
Book Description
The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
Experiences in the Biocontinuum
Author: Richard L. Summers
Publisher: Cambridge Scholars Publishing
ISBN: 1527557898
Category : Science
Languages : en
Pages : 505
Book Description
The central question in the biological sciences for the past 100 years has concerned an understanding of how living systems differ from other general physical phenomena and what makes these systems unique. With new developments in the fields of nonequilibrium thermodynamics, systems theory, chaos, and information theory over the past few decades, there has been growing interest in finally answering the question first posed by Erwin Schrödinger in the 1940s concerning the true scientific nature of living systems. Similarly, there is also increasing interest within the biologic community for a more holistic and non-reductionist methodology. The approach followed in this book builds on a foundation of information theory and semiotics while integrating basic thermodynamic considerations and systems theory to form a singular unifying concept that is proposed to be the essential process of living systems. However, the premise presented is much more than simply the exposition of a new hypothesis. This book describes the logical progression of thought incorporating a diverse array of established scientific ideas that were used in the conceptualization of a dynamic mathematical framework that can be employed as a novel analytic means for the study of living systems and their fundamental processes.
Publisher: Cambridge Scholars Publishing
ISBN: 1527557898
Category : Science
Languages : en
Pages : 505
Book Description
The central question in the biological sciences for the past 100 years has concerned an understanding of how living systems differ from other general physical phenomena and what makes these systems unique. With new developments in the fields of nonequilibrium thermodynamics, systems theory, chaos, and information theory over the past few decades, there has been growing interest in finally answering the question first posed by Erwin Schrödinger in the 1940s concerning the true scientific nature of living systems. Similarly, there is also increasing interest within the biologic community for a more holistic and non-reductionist methodology. The approach followed in this book builds on a foundation of information theory and semiotics while integrating basic thermodynamic considerations and systems theory to form a singular unifying concept that is proposed to be the essential process of living systems. However, the premise presented is much more than simply the exposition of a new hypothesis. This book describes the logical progression of thought incorporating a diverse array of established scientific ideas that were used in the conceptualization of a dynamic mathematical framework that can be employed as a novel analytic means for the study of living systems and their fundamental processes.