Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Molecular Biology of the Cell
DNA Repair and Mutagenesis
Author: Errol C. Friedberg
Publisher: American Society for Microbiology Press
ISBN: 1555813194
Category : Science
Languages : en
Pages : 2587
Book Description
An essential resource for all scientists researching cellular responses to DNA damage. • Introduces important new material reflective of the major changes and developments that have occurred in the field over the last decade. • Discussed the field within a strong historical framework, and all aspects of biological responses to DNA damage are detailed. • Provides information on covering sources and consequences of DNA damage; correcting altered bases in DNA: DNA repair; DNA damage tolerance and mutagenesis; regulatory responses to DNA damage in eukaryotes; and disease states associated with defective biological responses to DNA damage.
Publisher: American Society for Microbiology Press
ISBN: 1555813194
Category : Science
Languages : en
Pages : 2587
Book Description
An essential resource for all scientists researching cellular responses to DNA damage. • Introduces important new material reflective of the major changes and developments that have occurred in the field over the last decade. • Discussed the field within a strong historical framework, and all aspects of biological responses to DNA damage are detailed. • Provides information on covering sources and consequences of DNA damage; correcting altered bases in DNA: DNA repair; DNA damage tolerance and mutagenesis; regulatory responses to DNA damage in eukaryotes; and disease states associated with defective biological responses to DNA damage.
The Evaluation of Forensic DNA Evidence
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309134404
Category : Science
Languages : en
Pages : 270
Book Description
In 1992 the National Research Council issued DNA Technology in Forensic Science, a book that documented the state of the art in this emerging field. Recently, this volume was brought to worldwide attention in the murder trial of celebrity O. J. Simpson. The Evaluation of Forensic DNA Evidence reports on developments in population genetics and statistics since the original volume was published. The committee comments on statements in the original book that proved controversial or that have been misapplied in the courts. This volume offers recommendations for handling DNA samples, performing calculations, and other aspects of using DNA as a forensic toolâ€"modifying some recommendations presented in the 1992 volume. The update addresses two major areas: Determination of DNA profiles. The committee considers how laboratory errors (particularly false matches) can arise, how errors might be reduced, and how to take into account the fact that the error rate can never be reduced to zero. Interpretation of a finding that the DNA profile of a suspect or victim matches the evidence DNA. The committee addresses controversies in population genetics, exploring the problems that arise from the mixture of groups and subgroups in the American population and how this substructure can be accounted for in calculating frequencies. This volume examines statistical issues in interpreting frequencies as probabilities, including adjustments when a suspect is found through a database search. The committee includes a detailed discussion of what its recommendations would mean in the courtroom, with numerous case citations. By resolving several remaining issues in the evaluation of this increasingly important area of forensic evidence, this technical update will be important to forensic scientists and population geneticistsâ€"and helpful to attorneys, judges, and others who need to understand DNA and the law. Anyone working in laboratories and in the courts or anyone studying this issue should own this book.
Publisher: National Academies Press
ISBN: 0309134404
Category : Science
Languages : en
Pages : 270
Book Description
In 1992 the National Research Council issued DNA Technology in Forensic Science, a book that documented the state of the art in this emerging field. Recently, this volume was brought to worldwide attention in the murder trial of celebrity O. J. Simpson. The Evaluation of Forensic DNA Evidence reports on developments in population genetics and statistics since the original volume was published. The committee comments on statements in the original book that proved controversial or that have been misapplied in the courts. This volume offers recommendations for handling DNA samples, performing calculations, and other aspects of using DNA as a forensic toolâ€"modifying some recommendations presented in the 1992 volume. The update addresses two major areas: Determination of DNA profiles. The committee considers how laboratory errors (particularly false matches) can arise, how errors might be reduced, and how to take into account the fact that the error rate can never be reduced to zero. Interpretation of a finding that the DNA profile of a suspect or victim matches the evidence DNA. The committee addresses controversies in population genetics, exploring the problems that arise from the mixture of groups and subgroups in the American population and how this substructure can be accounted for in calculating frequencies. This volume examines statistical issues in interpreting frequencies as probabilities, including adjustments when a suspect is found through a database search. The committee includes a detailed discussion of what its recommendations would mean in the courtroom, with numerous case citations. By resolving several remaining issues in the evaluation of this increasingly important area of forensic evidence, this technical update will be important to forensic scientists and population geneticistsâ€"and helpful to attorneys, judges, and others who need to understand DNA and the law. Anyone working in laboratories and in the courts or anyone studying this issue should own this book.
The Molecular Basis of Mutation
Author: John W Drake
Publisher:
ISBN: 9784871871563
Category : Science
Languages : en
Pages : 288
Book Description
This book offers the first extensive introduction to mutational mechanisms, one of the most rapidly progressing and fruitful areas of molecular biology. It presents a broad outline of present knowledge while emphasizing many of the doubtful areas. The discussion is primarily concerned with mutation in prokaryotic microorganisms, because most of the early conceptual advances in molecular genetics arose from studies on these forums. Great emphasis is placed on bacteriophage systems, since these have been the most revealing in the development of current theory and description. A brief introduction to the structure, replication and genetics of viruses is provided. The effects of mutation on gene action are briefly considered in chapters on suppression and on polarity and complementation. This book is heavily referenced with investigators names appearing in the body of the book. Extensive use is made of the explanatory figures and suggestions for future investigations are frequently provided. The book is designed to appeal to graduate students and professional investigators (especially those entering the field of molecular biology from other disciplines). No detailed knowledge of genetics or biochemistry is assumed. John W. Drake is an American microbiologist, working for over half a century in the field of mutagenesis and DNA repair.
Publisher:
ISBN: 9784871871563
Category : Science
Languages : en
Pages : 288
Book Description
This book offers the first extensive introduction to mutational mechanisms, one of the most rapidly progressing and fruitful areas of molecular biology. It presents a broad outline of present knowledge while emphasizing many of the doubtful areas. The discussion is primarily concerned with mutation in prokaryotic microorganisms, because most of the early conceptual advances in molecular genetics arose from studies on these forums. Great emphasis is placed on bacteriophage systems, since these have been the most revealing in the development of current theory and description. A brief introduction to the structure, replication and genetics of viruses is provided. The effects of mutation on gene action are briefly considered in chapters on suppression and on polarity and complementation. This book is heavily referenced with investigators names appearing in the body of the book. Extensive use is made of the explanatory figures and suggestions for future investigations are frequently provided. The book is designed to appeal to graduate students and professional investigators (especially those entering the field of molecular biology from other disciplines). No detailed knowledge of genetics or biochemistry is assumed. John W. Drake is an American microbiologist, working for over half a century in the field of mutagenesis and DNA repair.
DNA Replication, Recombination, and Repair
Author: Fumio Hanaoka
Publisher: Springer
ISBN: 443155873X
Category : Science
Languages : en
Pages : 548
Book Description
This book is a comprehensive review of the detailed molecular mechanisms of and functional crosstalk among the replication, recombination, and repair of DNA (collectively called the "3Rs") and the related processes, with special consciousness of their biological and clinical consequences. The 3Rs are fundamental molecular mechanisms for organisms to maintain and sometimes intentionally alter genetic information. DNA replication, recombination, and repair, individually, have been important subjects of molecular biology since its emergence, but we have recently become aware that the 3Rs are actually much more intimately related to one another than we used to realize. Furthermore, the 3R research fields have been growing even more interdisciplinary, with better understanding of molecular mechanisms underlying other important processes, such as chromosome structures and functions, cell cycle and checkpoints, transcriptional and epigenetic regulation, and so on. This book comprises 7 parts and 21 chapters: Part 1 (Chapters 1–3), DNA Replication; Part 2 (Chapters 4–6), DNA Recombination; Part 3 (Chapters 7–9), DNA Repair; Part 4 (Chapters 10–13), Genome Instability and Mutagenesis; Part 5 (Chapters 14–15), Chromosome Dynamics and Functions; Part 6 (Chapters 16–18), Cell Cycle and Checkpoints; Part 7 (Chapters 19–21), Interplay with Transcription and Epigenetic Regulation. This volume should attract the great interest of graduate students, postdoctoral fellows, and senior scientists in broad research fields of basic molecular biology, not only the core 3Rs, but also the various related fields (chromosome, cell cycle, transcription, epigenetics, and similar areas). Additionally, researchers in neurological sciences, developmental biology, immunology, evolutionary biology, and many other fields will find this book valuable.
Publisher: Springer
ISBN: 443155873X
Category : Science
Languages : en
Pages : 548
Book Description
This book is a comprehensive review of the detailed molecular mechanisms of and functional crosstalk among the replication, recombination, and repair of DNA (collectively called the "3Rs") and the related processes, with special consciousness of their biological and clinical consequences. The 3Rs are fundamental molecular mechanisms for organisms to maintain and sometimes intentionally alter genetic information. DNA replication, recombination, and repair, individually, have been important subjects of molecular biology since its emergence, but we have recently become aware that the 3Rs are actually much more intimately related to one another than we used to realize. Furthermore, the 3R research fields have been growing even more interdisciplinary, with better understanding of molecular mechanisms underlying other important processes, such as chromosome structures and functions, cell cycle and checkpoints, transcriptional and epigenetic regulation, and so on. This book comprises 7 parts and 21 chapters: Part 1 (Chapters 1–3), DNA Replication; Part 2 (Chapters 4–6), DNA Recombination; Part 3 (Chapters 7–9), DNA Repair; Part 4 (Chapters 10–13), Genome Instability and Mutagenesis; Part 5 (Chapters 14–15), Chromosome Dynamics and Functions; Part 6 (Chapters 16–18), Cell Cycle and Checkpoints; Part 7 (Chapters 19–21), Interplay with Transcription and Epigenetic Regulation. This volume should attract the great interest of graduate students, postdoctoral fellows, and senior scientists in broad research fields of basic molecular biology, not only the core 3Rs, but also the various related fields (chromosome, cell cycle, transcription, epigenetics, and similar areas). Additionally, researchers in neurological sciences, developmental biology, immunology, evolutionary biology, and many other fields will find this book valuable.
Biology for AP ® Courses
Author: Julianne Zedalis
Publisher:
ISBN: 9781947172401
Category : Biology
Languages : en
Pages : 1923
Book Description
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Publisher:
ISBN: 9781947172401
Category : Biology
Languages : en
Pages : 1923
Book Description
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Molecular Biology - Not Only for Bioinformaticians
Author: Wiesława Widłak
Publisher: Springer
ISBN: 3642453619
Category : Computers
Languages : en
Pages : 159
Book Description
Bioinformatics, which can be defined as the application of computer science and information technology to the field of biology and medicine, has been rapidly developing over the past few decades. It generates new knowledge as well as the computational tools to create that knowledge. Understanding the basic processes in living organisms is therefore indispensable for bioinformaticians. This book addresses beginners in molecular biology, especially computer scientists who would like to work as bioinformaticians. It presents basic processes in living organisms in a condensed manner. Additionally, principles of several high-throughput technologies in molecular biology, which need the assistance of bioinformaticians, are explained from a biological point of view. It is structured in the following 9 chapters: cells and viruses; protein structure and function; nucleic acids; DNA replication, mutations, and repair; transcription and posttranscriptional processes; synthesis and posttranslational modifications of proteins; cell division; cell signaling pathways; and high-throughput technologies in molecular biology.
Publisher: Springer
ISBN: 3642453619
Category : Computers
Languages : en
Pages : 159
Book Description
Bioinformatics, which can be defined as the application of computer science and information technology to the field of biology and medicine, has been rapidly developing over the past few decades. It generates new knowledge as well as the computational tools to create that knowledge. Understanding the basic processes in living organisms is therefore indispensable for bioinformaticians. This book addresses beginners in molecular biology, especially computer scientists who would like to work as bioinformaticians. It presents basic processes in living organisms in a condensed manner. Additionally, principles of several high-throughput technologies in molecular biology, which need the assistance of bioinformaticians, are explained from a biological point of view. It is structured in the following 9 chapters: cells and viruses; protein structure and function; nucleic acids; DNA replication, mutations, and repair; transcription and posttranscriptional processes; synthesis and posttranslational modifications of proteins; cell division; cell signaling pathways; and high-throughput technologies in molecular biology.
Mutation-Driven Evolution
Author: Masatoshi Nei
Publisher: OUP Oxford
ISBN: 0199661731
Category : Science
Languages : en
Pages : 261
Book Description
The purpose of this book is to present a new theory of mutation-driven evolution, which is based on recent advances in genomics and evolutionary developmental biology. This theory asserts that the driving force of evolution is mutation and natural selection is of secondary importance.
Publisher: OUP Oxford
ISBN: 0199661731
Category : Science
Languages : en
Pages : 261
Book Description
The purpose of this book is to present a new theory of mutation-driven evolution, which is based on recent advances in genomics and evolutionary developmental biology. This theory asserts that the driving force of evolution is mutation and natural selection is of secondary importance.
DNA Repair Mechanisms
Author: ICN Pharmaceuticals, inc
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 840
Book Description
DNA Repair Mechanisms is an account of the proceedings at a major international conference on DNA Repair Mechanisms held at Keystone, Colorado on February 1978. The conference discusses through plenary sessions the overall standpoint of DNA repair. The papers presented and other important documents, such as short summaries by the workshop session conveners, comprise this book. The compilation describes the opposing views, those that agree and dispute about certain topic areas. This book, divided into 15 parts, is arranged according to the proceedings in the conference. The plenary sessions are ...
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 840
Book Description
DNA Repair Mechanisms is an account of the proceedings at a major international conference on DNA Repair Mechanisms held at Keystone, Colorado on February 1978. The conference discusses through plenary sessions the overall standpoint of DNA repair. The papers presented and other important documents, such as short summaries by the workshop session conveners, comprise this book. The compilation describes the opposing views, those that agree and dispute about certain topic areas. This book, divided into 15 parts, is arranged according to the proceedings in the conference. The plenary sessions are ...
The Genetics of Cancer
Author: B.A. Ponder
Publisher: Springer Science & Business Media
ISBN: 9401106770
Category : Medical
Languages : en
Pages : 222
Book Description
It has been recognized for almost 200 years that certain families seem to inherit cancer. It is only in the past decade, however, that molecular genetics and epidemiology have combined to define the role of inheritance in cancer more clearly, and to identify some of the genes involved. The causative genes can be tracked through cancer-prone families via genetic linkage and positional cloning. Several of the genes discovered have subsequently been proved to play critical roles in normal growth and development. There are also implications for the families themselves in terms of genetic testing with its attendant dilemmas, if it is not clear that useful action will result. The chapters in The Genetics of Cancer illustrate what has already been achieved and take a critical look at the future directions of this research and its potential clinical applications.
Publisher: Springer Science & Business Media
ISBN: 9401106770
Category : Medical
Languages : en
Pages : 222
Book Description
It has been recognized for almost 200 years that certain families seem to inherit cancer. It is only in the past decade, however, that molecular genetics and epidemiology have combined to define the role of inheritance in cancer more clearly, and to identify some of the genes involved. The causative genes can be tracked through cancer-prone families via genetic linkage and positional cloning. Several of the genes discovered have subsequently been proved to play critical roles in normal growth and development. There are also implications for the families themselves in terms of genetic testing with its attendant dilemmas, if it is not clear that useful action will result. The chapters in The Genetics of Cancer illustrate what has already been achieved and take a critical look at the future directions of this research and its potential clinical applications.