The Methods of Distances in the Theory of Probability and Statistics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Methods of Distances in the Theory of Probability and Statistics PDF full book. Access full book title The Methods of Distances in the Theory of Probability and Statistics by Svetlozar T. Rachev. Download full books in PDF and EPUB format.

The Methods of Distances in the Theory of Probability and Statistics

The Methods of Distances in the Theory of Probability and Statistics PDF Author: Svetlozar T. Rachev
Publisher: Springer Science & Business Media
ISBN: 1461448697
Category : Mathematics
Languages : en
Pages : 616

Book Description
This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute—Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)

The Methods of Distances in the Theory of Probability and Statistics

The Methods of Distances in the Theory of Probability and Statistics PDF Author: Svetlozar T. Rachev
Publisher: Springer Science & Business Media
ISBN: 1461448697
Category : Mathematics
Languages : en
Pages : 616

Book Description
This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute—Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)

Statistical Inference

Statistical Inference PDF Author: Ayanendranath Basu
Publisher: CRC Press
ISBN: 1420099663
Category : Computers
Languages : en
Pages : 424

Book Description
In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Stati

Lectures on the Coupling Method

Lectures on the Coupling Method PDF Author: Torgny Lindvall
Publisher: Courier Corporation
ISBN: 048615324X
Category : Mathematics
Languages : en
Pages : 292

Book Description
Practical and easy-to-use reference progresses from simple to advanced topics, covering, among other topics, renewal theory, Markov chains, Poisson approximation, ergodicity, and Strassen's theorem. 1992 edition.

High-Dimensional Probability

High-Dimensional Probability PDF Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299

Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Soft Methods in Probability, Statistics and Data Analysis

Soft Methods in Probability, Statistics and Data Analysis PDF Author: Przemyslaw Grzegorzewski
Publisher: Springer Science & Business Media
ISBN: 3790817732
Category : Mathematics
Languages : en
Pages : 376

Book Description
Classical probability theory and mathematical statistics appear sometimes too rigid for real life problems, especially while dealing with vague data or imprecise requirements. These problems have motivated many researchers to "soften" the classical theory. Some "softening" approaches utilize concepts and techniques developed in theories such as fuzzy sets theory, rough sets, possibility theory, theory of belief functions and imprecise probabilities, etc. Since interesting mathematical models and methods have been proposed in the frameworks of various theories, this text brings together experts representing different approaches used in soft probability, statistics and data analysis.

Introduction to Probability

Introduction to Probability PDF Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447

Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

A Modern Introduction to Probability and Statistics

A Modern Introduction to Probability and Statistics PDF Author: F.M. Dekking
Publisher: Springer Science & Business Media
ISBN: 1846281687
Category : Mathematics
Languages : en
Pages : 485

Book Description
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books

Measure, Integral and Probability

Measure, Integral and Probability PDF Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229

Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Introduction to Probability and Statistics Using R

Introduction to Probability and Statistics Using R PDF Author: G. Jay Kerns
Publisher: Lulu.com
ISBN: 0557249791
Category : Education
Languages : en
Pages : 388

Book Description
This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.

Weak Convergence of Measures

Weak Convergence of Measures PDF Author: Vladimir I. Bogachev
Publisher: American Mathematical Soc.
ISBN: 147044738X
Category : Mathematics
Languages : en
Pages : 302

Book Description
This book provides a thorough exposition of the main concepts and results related to various types of convergence of measures arising in measure theory, probability theory, functional analysis, partial differential equations, mathematical physics, and other theoretical and applied fields. Particular attention is given to weak convergence of measures. The principal material is oriented toward a broad circle of readers dealing with convergence in distribution of random variables and weak convergence of measures. The book contains the necessary background from measure theory and functional analysis. Large complementary sections aimed at researchers present the most important recent achievements. More than 100 exercises (ranging from easy introductory exercises to rather difficult problems for experienced readers) are given with hints, solutions, or references. Historic and bibliographic comments are included. The target readership includes mathematicians and physicists whose research is related to probability theory, mathematical statistics, functional analysis, and mathematical physics.