Author: Mehrdad Negahban
Publisher: CRC Press
ISBN: 1466563214
Category : Science
Languages : en
Pages : 784
Book Description
Born out of 15 years of courses and lectures on continuum mechanics, nonlinear mechanics, continuum thermodynamics, viscoelasticity, plasticity, crystal plasticity, and thermodynamic plasticity, The Mechanical and Thermodynamical Theory of Plasticity represents one of the most extensive and in-depth treatises on the mechanical and thermodynamical a
The Mechanical and Thermodynamical Theory of Plasticity
Author: Mehrdad Negahban
Publisher: CRC Press
ISBN: 1466563214
Category : Science
Languages : en
Pages : 784
Book Description
Born out of 15 years of courses and lectures on continuum mechanics, nonlinear mechanics, continuum thermodynamics, viscoelasticity, plasticity, crystal plasticity, and thermodynamic plasticity, The Mechanical and Thermodynamical Theory of Plasticity represents one of the most extensive and in-depth treatises on the mechanical and thermodynamical a
Publisher: CRC Press
ISBN: 1466563214
Category : Science
Languages : en
Pages : 784
Book Description
Born out of 15 years of courses and lectures on continuum mechanics, nonlinear mechanics, continuum thermodynamics, viscoelasticity, plasticity, crystal plasticity, and thermodynamic plasticity, The Mechanical and Thermodynamical Theory of Plasticity represents one of the most extensive and in-depth treatises on the mechanical and thermodynamical a
The Mechanical and Thermodynamical Theory of Plasticity
Author: Mehrdad Negahban
Publisher: CRC Press
ISBN: 0849372305
Category : Science
Languages : en
Pages : 785
Book Description
Born out of 15 years of courses and lectures on continuum mechanics, nonlinear mechanics, continuum thermodynamics, viscoelasticity, plasticity, crystal plasticity, and thermodynamic plasticity, The Mechanical and Thermodynamical Theory of Plasticity represents one of the most extensive and in-depth treatises on the mechanical and thermodynamical aspects of plastic and visicoplastic flow. Suitable for student readers and experts alike, it offers a clear and comprehensive presentation of multi-dimensional continuum thermodynamics to both aid in initial understanding and introduce and explore advanced topics. Covering a wide range of foundational subjects and presenting unique insights into the unification of disparate theories and practices, this book offers an extensive number of problems, figures, and examples to help the reader grasp the subject from many levels. Starting from one-dimensional axial motion in bars, the book builds a clear understanding of mechanics and continuum thermodynamics during plastic flow. This approach makes it accessible and applicable for a varied audience, including students and experts from engineering mechanics, mechanical engineering, civil engineering, and materials science.
Publisher: CRC Press
ISBN: 0849372305
Category : Science
Languages : en
Pages : 785
Book Description
Born out of 15 years of courses and lectures on continuum mechanics, nonlinear mechanics, continuum thermodynamics, viscoelasticity, plasticity, crystal plasticity, and thermodynamic plasticity, The Mechanical and Thermodynamical Theory of Plasticity represents one of the most extensive and in-depth treatises on the mechanical and thermodynamical aspects of plastic and visicoplastic flow. Suitable for student readers and experts alike, it offers a clear and comprehensive presentation of multi-dimensional continuum thermodynamics to both aid in initial understanding and introduce and explore advanced topics. Covering a wide range of foundational subjects and presenting unique insights into the unification of disparate theories and practices, this book offers an extensive number of problems, figures, and examples to help the reader grasp the subject from many levels. Starting from one-dimensional axial motion in bars, the book builds a clear understanding of mechanics and continuum thermodynamics during plastic flow. This approach makes it accessible and applicable for a varied audience, including students and experts from engineering mechanics, mechanical engineering, civil engineering, and materials science.
Principles of Hyperplasticity
Author: Guy T. Houlsby
Publisher: Springer Science & Business Media
ISBN: 1846282403
Category : Technology & Engineering
Languages : en
Pages : 351
Book Description
The approach to plasticity theory developed here is firmly rooted in thermodynamics. Emphasis is placed on the use of potentials and the derivation of incremental response, necessary for numerical analysis. The derivation of constitutive models for irreversible behaviour entirely from two scalar potentials is shown. The use of potentials allows models to be very simply defined, classified and, if necessary, developed and it permits dependent and independent variables to be interchanged, making possible different forms of a model for different applications. The theory is extended to include treatment of rate-dependent materials and a powerful concept, in which a single plastic strain is replaced by a plastic strain function, allowing smooth transitions between elastic and plastic behaviour is introduced. This monograph will benefit academic researchers in mechanics, civil engineering and geomechanics and practising geotechnical engineers; it will also interest numerical analysts in engineering mechanics.
Publisher: Springer Science & Business Media
ISBN: 1846282403
Category : Technology & Engineering
Languages : en
Pages : 351
Book Description
The approach to plasticity theory developed here is firmly rooted in thermodynamics. Emphasis is placed on the use of potentials and the derivation of incremental response, necessary for numerical analysis. The derivation of constitutive models for irreversible behaviour entirely from two scalar potentials is shown. The use of potentials allows models to be very simply defined, classified and, if necessary, developed and it permits dependent and independent variables to be interchanged, making possible different forms of a model for different applications. The theory is extended to include treatment of rate-dependent materials and a powerful concept, in which a single plastic strain is replaced by a plastic strain function, allowing smooth transitions between elastic and plastic behaviour is introduced. This monograph will benefit academic researchers in mechanics, civil engineering and geomechanics and practising geotechnical engineers; it will also interest numerical analysts in engineering mechanics.
The Thermomechanics of Plasticity and Fracture
Author: Gérard A. Maugin
Publisher: Cambridge University Press
ISBN: 9780521397803
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book concentrates upon the mathematical theory of plasticity and fracture as opposed to the physical theory of these fields, presented in the thermomechanical framework.
Publisher: Cambridge University Press
ISBN: 9780521397803
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book concentrates upon the mathematical theory of plasticity and fracture as opposed to the physical theory of these fields, presented in the thermomechanical framework.
Theory of Metal Forming Plasticity
Author: Andrzej Sluzalec
Publisher: Boom Koninklijke Uitgevers
ISBN: 9783540406488
Category : Crafts & Hobbies
Languages : en
Pages : 300
Book Description
This book provides a modern and comprehensive approach to metal forming plasticity. The contents supply readers with an up-to-date review of elementary concepts of metal forming plasticity, the necessary background material on continuum mechanics, and a discussion of the classical theories of metal forming plasticity. Final chapters introduce the fundamentals of sensitivity in metal forming and stochastic metal forming plasticity. Theory of Metal Forming Plasticity will be of particular interest to graduate students and researches working on plasticity in deparments of engineering mechanics, materials and mechanical engineering.
Publisher: Boom Koninklijke Uitgevers
ISBN: 9783540406488
Category : Crafts & Hobbies
Languages : en
Pages : 300
Book Description
This book provides a modern and comprehensive approach to metal forming plasticity. The contents supply readers with an up-to-date review of elementary concepts of metal forming plasticity, the necessary background material on continuum mechanics, and a discussion of the classical theories of metal forming plasticity. Final chapters introduce the fundamentals of sensitivity in metal forming and stochastic metal forming plasticity. Theory of Metal Forming Plasticity will be of particular interest to graduate students and researches working on plasticity in deparments of engineering mechanics, materials and mechanical engineering.
The State of Deformation in Earthlike Self-Gravitating Objects
Author: Wolfgang H. Müller
Publisher: Springer
ISBN: 3319325809
Category : Science
Languages : en
Pages : 117
Book Description
This book presents an in-depth continuum mechanics analysis of the deformation due to self-gravitation in terrestrial objects, such as the inner planets, rocky moons and asteroids. Following a brief history of the problem, modern continuum mechanics tools are presented in order to derive the underlying field equations, both for solid and fluid material models. Various numerical solution techniques are discussed, such as Runge-Kutta integration, series expansion, finite differences, and (adaptive) FE analysis. Analytical solutions for selected special cases, which are worked out in detail, are also included. All of these methods are then applied to the problem, quantitative results are compared, and the pros and cons of the analytical solutions and of all the numerical methods are discussed. The book culminates in a multi-layer model for planet Earth according to the PREM Model (Preliminary Earth Model) and in a viscoelastic analysis of the deformation problem, all from the viewpoint of rational continuum theory and numerical analysis.
Publisher: Springer
ISBN: 3319325809
Category : Science
Languages : en
Pages : 117
Book Description
This book presents an in-depth continuum mechanics analysis of the deformation due to self-gravitation in terrestrial objects, such as the inner planets, rocky moons and asteroids. Following a brief history of the problem, modern continuum mechanics tools are presented in order to derive the underlying field equations, both for solid and fluid material models. Various numerical solution techniques are discussed, such as Runge-Kutta integration, series expansion, finite differences, and (adaptive) FE analysis. Analytical solutions for selected special cases, which are worked out in detail, are also included. All of these methods are then applied to the problem, quantitative results are compared, and the pros and cons of the analytical solutions and of all the numerical methods are discussed. The book culminates in a multi-layer model for planet Earth according to the PREM Model (Preliminary Earth Model) and in a viscoelastic analysis of the deformation problem, all from the viewpoint of rational continuum theory and numerical analysis.
Solid Mechanics
Author: Albrecht Bertram
Publisher: Springer
ISBN: 3319195662
Category : Science
Languages : en
Pages : 331
Book Description
This textbook offers an introduction to modeling the mechanical behavior of solids within continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of the most important models in one dimension. Tensor calculus, which is called for in three-dimensional modeling, is concisely presented in the second part of the book. Once the reader is equipped with these essential mathematical tools, the third part of the book develops the foundations of continuum mechanics right from the beginning. Lastly, the book’s fourth part focuses on modeling the mechanics of materials and in particular elasticity, viscoelasticity and plasticity. Intended as an introductory textbook for students and for professionals interested in self-study, it also features numerous worked-out examples to aid in understanding.
Publisher: Springer
ISBN: 3319195662
Category : Science
Languages : en
Pages : 331
Book Description
This textbook offers an introduction to modeling the mechanical behavior of solids within continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of the most important models in one dimension. Tensor calculus, which is called for in three-dimensional modeling, is concisely presented in the second part of the book. Once the reader is equipped with these essential mathematical tools, the third part of the book develops the foundations of continuum mechanics right from the beginning. Lastly, the book’s fourth part focuses on modeling the mechanics of materials and in particular elasticity, viscoelasticity and plasticity. Intended as an introductory textbook for students and for professionals interested in self-study, it also features numerous worked-out examples to aid in understanding.
The Mechanics and Thermodynamics of Continua
Author: Morton E. Gurtin
Publisher: Cambridge University Press
ISBN: 1139482157
Category : Science
Languages : en
Pages : 721
Book Description
The Mechanics and Thermodynamics of Continua presents a unified treatment of continuum mechanics and thermodynamics that emphasises the universal status of the basic balances and the entropy imbalance. These laws are viewed as fundamental building blocks on which to frame theories of material behaviour. As a valuable reference source, this book presents a detailed and complete treatment of continuum mechanics and thermodynamics for graduates and advanced undergraduates in engineering, physics and mathematics. The chapters on plasticity discuss the standard isotropic theories and, in addition, crystal plasticity and gradient plasticity.
Publisher: Cambridge University Press
ISBN: 1139482157
Category : Science
Languages : en
Pages : 721
Book Description
The Mechanics and Thermodynamics of Continua presents a unified treatment of continuum mechanics and thermodynamics that emphasises the universal status of the basic balances and the entropy imbalance. These laws are viewed as fundamental building blocks on which to frame theories of material behaviour. As a valuable reference source, this book presents a detailed and complete treatment of continuum mechanics and thermodynamics for graduates and advanced undergraduates in engineering, physics and mathematics. The chapters on plasticity discuss the standard isotropic theories and, in addition, crystal plasticity and gradient plasticity.
Plasticity Theory
Author: Jacob Lubliner
Publisher: Courier Corporation
ISBN: 0486318206
Category : Technology & Engineering
Languages : en
Pages : 548
Book Description
The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and geotechnical engineers, metallurgists and others. The necessary mathematics and basic mechanics and thermodynamics are covered in an introductory chapter, making the book a self-contained text suitable for advanced undergraduates and graduate students, as well as a reference for practitioners of solid mechanics.
Publisher: Courier Corporation
ISBN: 0486318206
Category : Technology & Engineering
Languages : en
Pages : 548
Book Description
The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and geotechnical engineers, metallurgists and others. The necessary mathematics and basic mechanics and thermodynamics are covered in an introductory chapter, making the book a self-contained text suitable for advanced undergraduates and graduate students, as well as a reference for practitioners of solid mechanics.
Introduction to Thermodynamics of Mechanical Fatigue
Author: Michael M. Khonsari
Publisher: CRC Press
ISBN: 1466511796
Category : Science
Languages : en
Pages : 168
Book Description
Fatigue is probabilistic in nature and involves a complex spectrum of loading history with variable amplitudes and frequencies. Yet most available fatigue failure prediction methods are empirical and concentrate on very specific types of loading. Taking a different approach, Introduction to Thermodynamics of Mechanical Fatigue examines the treatment of fatigue via the principles of thermodynamics. It starts from the premise that fatigue is a dissipative process and must obey the laws of thermodynamics. In general, it can be hypothesized that mechanical degradation is a consequence of irreversible thermodynamic processes. This suggests that entropy generation offers a natural measure of degradation. An Entropic Approach to Fatigue and Degradation Drawing on recent cutting-edge research and development, the authors present a unified entropic approach to problems involving fatigue. They introduce the fundamentals of fatigue processes and explore a wide range of practical engineering applications. Fundamental Concepts and Methodologies The book reviews commonly observed failure modes, discusses how to analyze fatigue problems, and examines the deformation characteristics of a solid material subjected to fatigue loading. It also looks at how to use thermodynamics to determine the onset of fatigue failure. In addition, the book presents methodologies for improving fatigue life and for accelerated fatigue testing. Learn How to Apply the Entropic Approach to Fatigue Problems Comprehensive and well organized, this work helps readers apply powerful thermodynamics concepts to effectively treat fatigue problems at the design stage. It offers an accessible introduction to a new and exciting area of research in the field of fatigue failure analysis.
Publisher: CRC Press
ISBN: 1466511796
Category : Science
Languages : en
Pages : 168
Book Description
Fatigue is probabilistic in nature and involves a complex spectrum of loading history with variable amplitudes and frequencies. Yet most available fatigue failure prediction methods are empirical and concentrate on very specific types of loading. Taking a different approach, Introduction to Thermodynamics of Mechanical Fatigue examines the treatment of fatigue via the principles of thermodynamics. It starts from the premise that fatigue is a dissipative process and must obey the laws of thermodynamics. In general, it can be hypothesized that mechanical degradation is a consequence of irreversible thermodynamic processes. This suggests that entropy generation offers a natural measure of degradation. An Entropic Approach to Fatigue and Degradation Drawing on recent cutting-edge research and development, the authors present a unified entropic approach to problems involving fatigue. They introduce the fundamentals of fatigue processes and explore a wide range of practical engineering applications. Fundamental Concepts and Methodologies The book reviews commonly observed failure modes, discusses how to analyze fatigue problems, and examines the deformation characteristics of a solid material subjected to fatigue loading. It also looks at how to use thermodynamics to determine the onset of fatigue failure. In addition, the book presents methodologies for improving fatigue life and for accelerated fatigue testing. Learn How to Apply the Entropic Approach to Fatigue Problems Comprehensive and well organized, this work helps readers apply powerful thermodynamics concepts to effectively treat fatigue problems at the design stage. It offers an accessible introduction to a new and exciting area of research in the field of fatigue failure analysis.