Author: William A. Phillips
Publisher: Springer Science & Business Media
ISBN: 3642815340
Category : Science
Languages : en
Pages : 179
Book Description
It is now ten years since it was first convincingly shown that below 1 K the ther mal conductivity and the heat capacity of amorphous solids behave in a way which is strikingly different to that of crystalline solids. Since that time there has been a wide variety of experimental and theoretical studies which have not only defined and clarified the low temperature problem more closely, but have also linked these differences between amorphous and crystalline solids to those suggested by older acoustic and thermal experiments (extending up to 100 K). The interest in this somewhat restricted branch of physics lies to a considerable extent in the fact that the differences were so unexpected. It might be thought that as the tempera ture, probing frequency, or more generally the energy decreases, a continuum de scription in which structural differences between glass and crystal are concealed should become more accurate. In a sense this is true, but it appears that there exists in an amorphous solid a large density of additional excitations which have no counterpart in normal crystals. This book presents a survey of the wide range of experimental investigations of these low energy excitations, together with a re view of the various theoretical models put forward to explain their existence and nature.
Amorphous Solids
Author: William A. Phillips
Publisher: Springer Science & Business Media
ISBN: 3642815340
Category : Science
Languages : en
Pages : 179
Book Description
It is now ten years since it was first convincingly shown that below 1 K the ther mal conductivity and the heat capacity of amorphous solids behave in a way which is strikingly different to that of crystalline solids. Since that time there has been a wide variety of experimental and theoretical studies which have not only defined and clarified the low temperature problem more closely, but have also linked these differences between amorphous and crystalline solids to those suggested by older acoustic and thermal experiments (extending up to 100 K). The interest in this somewhat restricted branch of physics lies to a considerable extent in the fact that the differences were so unexpected. It might be thought that as the tempera ture, probing frequency, or more generally the energy decreases, a continuum de scription in which structural differences between glass and crystal are concealed should become more accurate. In a sense this is true, but it appears that there exists in an amorphous solid a large density of additional excitations which have no counterpart in normal crystals. This book presents a survey of the wide range of experimental investigations of these low energy excitations, together with a re view of the various theoretical models put forward to explain their existence and nature.
Publisher: Springer Science & Business Media
ISBN: 3642815340
Category : Science
Languages : en
Pages : 179
Book Description
It is now ten years since it was first convincingly shown that below 1 K the ther mal conductivity and the heat capacity of amorphous solids behave in a way which is strikingly different to that of crystalline solids. Since that time there has been a wide variety of experimental and theoretical studies which have not only defined and clarified the low temperature problem more closely, but have also linked these differences between amorphous and crystalline solids to those suggested by older acoustic and thermal experiments (extending up to 100 K). The interest in this somewhat restricted branch of physics lies to a considerable extent in the fact that the differences were so unexpected. It might be thought that as the tempera ture, probing frequency, or more generally the energy decreases, a continuum de scription in which structural differences between glass and crystal are concealed should become more accurate. In a sense this is true, but it appears that there exists in an amorphous solid a large density of additional excitations which have no counterpart in normal crystals. This book presents a survey of the wide range of experimental investigations of these low energy excitations, together with a re view of the various theoretical models put forward to explain their existence and nature.
Fundamentals of Inorganic Glasses
Author: Arun K. Varshneya
Publisher: Elsevier
ISBN: 0128162260
Category : Science
Languages : en
Pages : 756
Book Description
Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. - Clearly develops fundamental concepts and the basics of glass science and glass chemistry - Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses - Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more - Concludes chapters with problem sets and suggested readings to facilitate self-study
Publisher: Elsevier
ISBN: 0128162260
Category : Science
Languages : en
Pages : 756
Book Description
Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. - Clearly develops fundamental concepts and the basics of glass science and glass chemistry - Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses - Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more - Concludes chapters with problem sets and suggested readings to facilitate self-study
Low-temperature Thermal And Vibrational Properties Of Disordered Solids: A Half-century Of Universal "Anomalies" Of Glasses
Author: Miguel A Ramos
Publisher: World Scientific
ISBN: 1800612591
Category : Science
Languages : en
Pages : 505
Book Description
This book, edited by M. A. Ramos and contributed by several reputed physicists in the field, presents a timely review on low-temperature thermal and vibrational properties of glasses, and of disordered solids in general. In 1971, the seminal work of Zeller and Pohl was published, which triggered this relevant research field in condensed matter physics. Hence, this book also commemorates about 50 years of that highlight with a comprehensive, updated review.In brief, glasses (firstly genuine amorphous solids but later on followed by different disordered crystals) were found to universally exhibit low-temperature properties (specific heat, thermal conductivity, acoustic and dielectric attenuation, etc.) unexpectedly very similar among them — and very different from those of their crystalline counterparts.These universal 'anomalies' of glasses and other disordered solids remain very controversial topics in condensed matter physics. They have been addressed exhaustively in this book, through many updated experimental data, a survey of most relevant models and theories, as well as by computational simulations.
Publisher: World Scientific
ISBN: 1800612591
Category : Science
Languages : en
Pages : 505
Book Description
This book, edited by M. A. Ramos and contributed by several reputed physicists in the field, presents a timely review on low-temperature thermal and vibrational properties of glasses, and of disordered solids in general. In 1971, the seminal work of Zeller and Pohl was published, which triggered this relevant research field in condensed matter physics. Hence, this book also commemorates about 50 years of that highlight with a comprehensive, updated review.In brief, glasses (firstly genuine amorphous solids but later on followed by different disordered crystals) were found to universally exhibit low-temperature properties (specific heat, thermal conductivity, acoustic and dielectric attenuation, etc.) unexpectedly very similar among them — and very different from those of their crystalline counterparts.These universal 'anomalies' of glasses and other disordered solids remain very controversial topics in condensed matter physics. They have been addressed exhaustively in this book, through many updated experimental data, a survey of most relevant models and theories, as well as by computational simulations.
The Low Temperature Thermal Properties of Glasses
Author: Richard Burnite Stephens
Publisher:
ISBN:
Category : Amorphous substances
Languages : en
Pages : 626
Book Description
Publisher:
ISBN:
Category : Amorphous substances
Languages : en
Pages : 626
Book Description
Polymer Properties at Room and Cryogenic Temperatures
Author: Gunther Hartwig
Publisher: Springer Science & Business Media
ISBN: 9780306449871
Category : Science
Languages : en
Pages : 298
Book Description
Most descriptions of polymers start at room temperature and end at the melting point. This textbook starts at very low temperatures and ends at room temperature. At low temperatures, may processes and relaxations are frozen which allows singular processes or separate relaxations to be studied. At room temperatures, or at the main glass transitions, many processes overlap and the properties are determined by relaxations. At low temperatures, there are temperature ranges with negligible influences by glass transitions. They can be used for investigating so-called basic properties which arise from principles of solid state physics. The chain structure of polymers, however, requires stringent modifications for establishing solid state physics of polymers. Several processes which are specific of polymers, occur only at low temperatures. There are also technological aspects for considering polymers at low temperatures. More and more applications of polymeric materials in low temperature technology appear. Some examples are thermal and electrical insulations, support elements for cryogenic devices, low-loss materials for high frequency equipments. It is hoped that, in addition to the scientific part, a data collection in the appendix may help to apply polymers more intensively in low temperature technology. The author greatly appreciates the contributions by his coworkers of the Kernforschungszentrum Karlsruhe in measurement and discussion of many data presented in the textbook and its appendix. Fruitful disccussions with the colleagues Prof. H. Baur, Prof. S. Hunklinger, Prof. D. Munz and Prof. R.
Publisher: Springer Science & Business Media
ISBN: 9780306449871
Category : Science
Languages : en
Pages : 298
Book Description
Most descriptions of polymers start at room temperature and end at the melting point. This textbook starts at very low temperatures and ends at room temperature. At low temperatures, may processes and relaxations are frozen which allows singular processes or separate relaxations to be studied. At room temperatures, or at the main glass transitions, many processes overlap and the properties are determined by relaxations. At low temperatures, there are temperature ranges with negligible influences by glass transitions. They can be used for investigating so-called basic properties which arise from principles of solid state physics. The chain structure of polymers, however, requires stringent modifications for establishing solid state physics of polymers. Several processes which are specific of polymers, occur only at low temperatures. There are also technological aspects for considering polymers at low temperatures. More and more applications of polymeric materials in low temperature technology appear. Some examples are thermal and electrical insulations, support elements for cryogenic devices, low-loss materials for high frequency equipments. It is hoped that, in addition to the scientific part, a data collection in the appendix may help to apply polymers more intensively in low temperature technology. The author greatly appreciates the contributions by his coworkers of the Kernforschungszentrum Karlsruhe in measurement and discussion of many data presented in the textbook and its appendix. Fruitful disccussions with the colleagues Prof. H. Baur, Prof. S. Hunklinger, Prof. D. Munz and Prof. R.
Low-Temperature Properties of Bituminous Materials and Compacted Bituminous Paving Mixtures
Low-temperature Properties of Bituminous Materials and Compacted Bituminous Paving Mixtures
Author: American Society for Testing and Materials
Publisher: ASTM International
ISBN: 9780462800004
Category : Technology & Engineering
Languages : en
Pages : 130
Book Description
Publisher: ASTM International
ISBN: 9780462800004
Category : Technology & Engineering
Languages : en
Pages : 130
Book Description
Low Temperature Properties of Selected Materials
Author: Dorothea M. Johnson
Publisher:
ISBN:
Category : Low temperatures
Languages : en
Pages : 182
Book Description
This report is a bibliography of the work reported in the literature on the effects of low temperature on the properties of structural materials. Some of the newer areas of cryogenic technology such as superconducting machinery involve environments which may subject the components to temperature as low as 4 K. Exposure of structural materials to such low temperatures affects their properties. This bibliography contains 963 references published between 1950-1976, arranged in chronological/alphabetical order. Combined material/property indexes are provided. (Author).
Publisher:
ISBN:
Category : Low temperatures
Languages : en
Pages : 182
Book Description
This report is a bibliography of the work reported in the literature on the effects of low temperature on the properties of structural materials. Some of the newer areas of cryogenic technology such as superconducting machinery involve environments which may subject the components to temperature as low as 4 K. Exposure of structural materials to such low temperatures affects their properties. This bibliography contains 963 references published between 1950-1976, arranged in chronological/alphabetical order. Combined material/property indexes are provided. (Author).
Low-Temperature Properties of Polymers
Author: I. Perepechko
Publisher: Elsevier
ISBN: 1483158004
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Low-Temperature Properties of Polymers systematizes the available materials on polymers. This book also describes the main trends in the investigation of interrelated properties of polymers, such as thermal (heat capacity, thermal conductivity, and thermal expansion), acoustical, dielectric, and viscoelastic, which maintain the physical properties of polymers at low temperatures. Comprised of nine chapters, this book first covers heat capacity of polymers at low temperature, and then tackles thermal conductivity of polymers at low temperatures. Chapter 3 discusses thermal expansion of polymers at low temperatures, and Chapter 4 tackles electrical properties of polymers at low temperatures. The fifth chapter covers nuclear magnetic resonance in polymers at low temperature, while the succeeding chapter encompasses dynamic mechanical properties of polymers at low temperatures. Chapter 7 concerns itself with the acoustical properties of polymers at low temperatures, while the succeeding chapter covers viscoelastic parameters of polymers at low temperatures. The closing chapter covers how to determine the thermophysical characteristics of polymers by acoustic measurement at helium temperature. This book will be of great interest to researchers or professionals whose line of work involves the manipulation and understanding of the properties of polymers.
Publisher: Elsevier
ISBN: 1483158004
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Low-Temperature Properties of Polymers systematizes the available materials on polymers. This book also describes the main trends in the investigation of interrelated properties of polymers, such as thermal (heat capacity, thermal conductivity, and thermal expansion), acoustical, dielectric, and viscoelastic, which maintain the physical properties of polymers at low temperatures. Comprised of nine chapters, this book first covers heat capacity of polymers at low temperature, and then tackles thermal conductivity of polymers at low temperatures. Chapter 3 discusses thermal expansion of polymers at low temperatures, and Chapter 4 tackles electrical properties of polymers at low temperatures. The fifth chapter covers nuclear magnetic resonance in polymers at low temperature, while the succeeding chapter encompasses dynamic mechanical properties of polymers at low temperatures. Chapter 7 concerns itself with the acoustical properties of polymers at low temperatures, while the succeeding chapter covers viscoelastic parameters of polymers at low temperatures. The closing chapter covers how to determine the thermophysical characteristics of polymers by acoustic measurement at helium temperature. This book will be of great interest to researchers or professionals whose line of work involves the manipulation and understanding of the properties of polymers.
Characterization of Wisconsin Mixture Low Temperature Properties for the AASHTO Mechanistic-empirical Pavement Design Guide
Author: Ramon Francis Bonaquist
Publisher:
ISBN:
Category : Pavements, Asphalt
Languages : en
Pages : 110
Book Description
This research evaluated the low temperature creep compliance and tensile strength properties of Wisconsin mixtures. Creep compliance and tensile strength data were collected for 16 Wisconsin mixtures representing commonly used aggregate sources and binder grades. Engineering and statistical analyses were performed on the data to provide recommendations for using measured mechanical properties in thermal cracking analyses with the Mechanistic-Empirical Pavement Design Guide (MEPDG), and to evaluate the thermal fracture resistance of Wisconsin mixtures.
Publisher:
ISBN:
Category : Pavements, Asphalt
Languages : en
Pages : 110
Book Description
This research evaluated the low temperature creep compliance and tensile strength properties of Wisconsin mixtures. Creep compliance and tensile strength data were collected for 16 Wisconsin mixtures representing commonly used aggregate sources and binder grades. Engineering and statistical analyses were performed on the data to provide recommendations for using measured mechanical properties in thermal cracking analyses with the Mechanistic-Empirical Pavement Design Guide (MEPDG), and to evaluate the thermal fracture resistance of Wisconsin mixtures.