The Local Index Formula in Semifinite Von Neumann Algebras II PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Local Index Formula in Semifinite Von Neumann Algebras II PDF full book. Access full book title The Local Index Formula in Semifinite Von Neumann Algebras II by Alan L. Carey. Download full books in PDF and EPUB format.

The Local Index Formula in Semifinite Von Neumann Algebras II

The Local Index Formula in Semifinite Von Neumann Algebras II PDF Author: Alan L. Carey
Publisher:
ISBN:
Category : Fredholm equations
Languages : en
Pages : 38

Book Description


The Local Index Formula in Semifinite Von Neumann Algebras II

The Local Index Formula in Semifinite Von Neumann Algebras II PDF Author: Alan L. Carey
Publisher:
ISBN:
Category : Fredholm equations
Languages : en
Pages : 38

Book Description


The Local Index Formula in Semifinite Von Neumann Algebras I

The Local Index Formula in Semifinite Von Neumann Algebras I PDF Author: Alan L. Carey
Publisher:
ISBN:
Category : Fredholm equations
Languages : en
Pages : 66

Book Description


An Invitation to Noncommutative Geometry

An Invitation to Noncommutative Geometry PDF Author: Masoud Khalkhali
Publisher: World Scientific
ISBN: 981270616X
Category : Mathematics
Languages : en
Pages : 515

Book Description
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.

Noncommutative Geometry and Particle Physics

Noncommutative Geometry and Particle Physics PDF Author: Walter D. van Suijlekom
Publisher: Springer
ISBN: 9401791627
Category : Science
Languages : en
Pages : 246

Book Description
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Noncommutative Geometry and Physics 3

Noncommutative Geometry and Physics 3 PDF Author: Giuseppe Dito
Publisher: World Scientific
ISBN: 981442501X
Category : Mathematics
Languages : en
Pages : 537

Book Description
Noncommutative differential geometry has many actual and potential applications to several domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field.

Perspectives on Noncommutative Geometry

Perspectives on Noncommutative Geometry PDF Author: Masoud Khalkhali
Publisher: American Mathematical Soc.
ISBN: 0821848496
Category : Mathematics
Languages : en
Pages : 176

Book Description
This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This has now been vastly generalized through Connes' notion of spectral triples. Finally, recent years have witnessed the impact of number theory, algebraic geometry and the theory of motives, and quantum field theory on noncommutative geometry. Almost all of these aspects are touched upon with new results in the papers of this volume. This book is intended for graduate students and researchers in both mathematics and theoretical physics who are interested in noncommutative geometry and its applications.

Index Theory for Locally Compact Noncommutative Geometries

Index Theory for Locally Compact Noncommutative Geometries PDF Author: A. L. Carey
Publisher: American Mathematical Soc.
ISBN: 0821898388
Category : Mathematics
Languages : en
Pages : 142

Book Description
Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the present text, the authors prove the local index formula for spectral triples over nonunital algebras, without the assumption of local units in our algebra. This formula has been successfully used to calculate index pairings in numerous noncommutative examples. The absence of any other effective method of investigating index problems in geometries that are genuinely noncommutative, particularly in the nonunital situation, was a primary motivation for this study and the authors illustrate this point with two examples in the text. In order to understand what is new in their approach in the commutative setting the authors prove an analogue of the Gromov-Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with bounded geometry, without invoking compact supports. For odd dimensional manifolds their index formula appears to be completely new.

Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives PDF Author: Alain Connes
Publisher: American Mathematical Soc.
ISBN: 1470450453
Category :
Languages : en
Pages : 785

Book Description
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

An Introduction to Noncommutative Geometry

An Introduction to Noncommutative Geometry PDF Author: Joseph C. Várilly
Publisher: European Mathematical Society
ISBN: 9783037190241
Category : Mathematics
Languages : en
Pages : 134

Book Description
Noncommutative geometry, inspired by quantum physics, describes singular spaces by their noncommutative coordinate algebras and metric structures by Dirac-like operators. Such metric geometries are described mathematically by Connes' theory of spectral triples. These lectures, delivered at an EMS Summer School on noncommutative geometry and its applications, provide an overview of spectral triples based on examples. This introduction is aimed at graduate students of both mathematics and theoretical physics. It deals with Dirac operators on spin manifolds, noncommutative tori, Moyal quantization and tangent groupoids, action functionals, and isospectral deformations. The structural framework is the concept of a noncommutative spin geometry; the conditions on spectral triples which determine this concept are developed in detail. The emphasis throughout is on gaining understanding by computing the details of specific examples. The book provides a middle ground between a comprehensive text and a narrowly focused research monograph. It is intended for self-study, enabling the reader to gain access to the essentials of noncommutative geometry. New features since the original course are an expanded bibliography and a survey of more recent examples and applications of spectral triples.

Singular Traces

Singular Traces PDF Author: Steven Lord
Publisher: Walter de Gruyter
ISBN: 311026255X
Category : Mathematics
Languages : en
Pages : 468

Book Description
This book is the first complete study and monograph dedicated to singular traces. The text mathematically formalises the study of traces in a self contained theory of functional analysis. Extensive notes will treat the historical development. The final section will contain the most complete and concise treatment known of the integration half of Connes' quantum calculus. Singular traces are traces on ideals of compact operators that vanish on the subideal of finite rank operators. Singular traces feature in A. Connes' interpretation of noncommutative residues. Particularly the Dixmier trace,which generalises the restricted Adler-Manin-Wodzicki residue of pseudo-differential operators and plays the role of the residue for a new catalogue of 'geometric' spaces, including Connes-Chamseddine standard models, Yang-Mills action for quantum differential forms, fractals, isospectral deformations, foliations and noncommutative index theory. The theory of singular traces has been studied after Connes' application to non-commutative geometry and physics by various authors. Recent work by Nigel Kalton and the authors has advanced the theory of singular traces.Singular traces can be equated to symmetric functionals of symmetric sequence or function spaces, residues of zeta functions and heat kernel asymptotics, and characterised by Lidksii and Fredholm formulas. The traces and formulas used in noncommutative geometry are now completely understood in this theory, with surprising new mathematical and physical consequences. For mathematical readers the text offers fundamental functional analysis results and, due to Nigel Kalton's contribution, a now complete theory of traces on compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and access to the deeper mathematical features of traces on ideals associated to the harmonic sequence. These features, not known and not discussed in general texts on noncommutative geometry, are undoubtably physical and probe to the fascinating heart of classical limits and quantization.