Author: Marek J. Wójcik
Publisher: John Wiley & Sons
ISBN: 3527834907
Category : Science
Languages : en
Pages : 548
Book Description
Spectroscopy and Computation of Hydrogen-Bonded Systems Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.
Spectroscopy and Computation of Hydrogen-Bonded Systems
Author: Marek J. Wójcik
Publisher: John Wiley & Sons
ISBN: 3527834907
Category : Science
Languages : en
Pages : 548
Book Description
Spectroscopy and Computation of Hydrogen-Bonded Systems Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.
Publisher: John Wiley & Sons
ISBN: 3527834907
Category : Science
Languages : en
Pages : 548
Book Description
Spectroscopy and Computation of Hydrogen-Bonded Systems Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.
Structure and Dynamics of Weakly Bound Molecular Complexes
Author: Alfons Weber
Publisher: Springer Science & Business Media
ISBN: 9400939698
Category : Science
Languages : en
Pages : 623
Book Description
The study of weakly bound molecular complexes has in recent years brought this field of investigation to the forefront of physical and chemical research. The scope of the subject is wide and different terminology and nomenclature is current among the various subspecialties. Thus, the term "metal cluster" often connotes to the organic chemist a metal-organic compound, while the physicist will more likely think of groups of metal atoms held together by weak interatomic forces. Aggregates, clusters, complexes, van der Waals molecules, hydrogen-bonded molecules, etc. are terms currently in use, sometimes interchangeably while other times with well defined and mutually exclusive meanings. The subjects of this volume are the free, isolated vim der Waals and hydrogen-bonded molecules. Owing to the present state of experimental knowledge these are mostly dimers, i. e. , entities formed by two strongly bound molecules, an atom and a molecule, or two atoms held together by the weak hydrogen-bonding, or the still weaker van der Waals forces. Weakly bound complexes formed of more than two strongly bound sub-units, i. e. , trimers, tetramers, etc. , are now coming within reachof experimental observation and several papers in this book deal with them. The study of van der Waals and hydrogen-bonded interactions has been pursued for several decades. Most of these ,investigations have, however, dealt with systems in the condensed phase in which bulk effects are commingled with and therefore mask the weak binary interactions.
Publisher: Springer Science & Business Media
ISBN: 9400939698
Category : Science
Languages : en
Pages : 623
Book Description
The study of weakly bound molecular complexes has in recent years brought this field of investigation to the forefront of physical and chemical research. The scope of the subject is wide and different terminology and nomenclature is current among the various subspecialties. Thus, the term "metal cluster" often connotes to the organic chemist a metal-organic compound, while the physicist will more likely think of groups of metal atoms held together by weak interatomic forces. Aggregates, clusters, complexes, van der Waals molecules, hydrogen-bonded molecules, etc. are terms currently in use, sometimes interchangeably while other times with well defined and mutually exclusive meanings. The subjects of this volume are the free, isolated vim der Waals and hydrogen-bonded molecules. Owing to the present state of experimental knowledge these are mostly dimers, i. e. , entities formed by two strongly bound molecules, an atom and a molecule, or two atoms held together by the weak hydrogen-bonding, or the still weaker van der Waals forces. Weakly bound complexes formed of more than two strongly bound sub-units, i. e. , trimers, tetramers, etc. , are now coming within reachof experimental observation and several papers in this book deal with them. The study of van der Waals and hydrogen-bonded interactions has been pursued for several decades. Most of these ,investigations have, however, dealt with systems in the condensed phase in which bulk effects are commingled with and therefore mask the weak binary interactions.
Computational Methods for the Description of Intermolecular Interactions and Molecular Motion in Confining Environments
Author: Heribert Reis
Publisher: Frontiers Media SA
ISBN: 2889764109
Category : Science
Languages : en
Pages : 130
Book Description
Publisher: Frontiers Media SA
ISBN: 2889764109
Category : Science
Languages : en
Pages : 130
Book Description
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 862
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 862
Book Description
Infrared Spectral Interpretation
Author: Brian C. Smith
Publisher: CRC Press
ISBN: 9780849324635
Category : Science
Languages : en
Pages : 286
Book Description
This author's second volume introduces basic principles of interpreting infrared spectral data, teaching its readers to make sense of the data coming from an infrared spectrometer. Contents include spectra and diagnostic bands for the more common functional groups as well as chapters on polyester spectra and interpretation aids. Discussions include: Science of infrared interpretation Light and molecular vibrations How and why molecules absorb infrared radiation Peak heights, intensities, and widths Hydrocarbons, carbonyl groups, and molecules with C-N bonds Polymers and inorganic molecules The use of atlases, library searching, spectral subtraction, and the Internet in augmenting interpretation Each chapter presents an introduction to the nomenclature and structure of a specific functional group and proceeds with the important diagnostic bands for each group. Infrared Spectral Interpretation serves both novices and experienced practitioners in this field. The author maintains a website and blog with supplemental material. His training course schedule is also available online.
Publisher: CRC Press
ISBN: 9780849324635
Category : Science
Languages : en
Pages : 286
Book Description
This author's second volume introduces basic principles of interpreting infrared spectral data, teaching its readers to make sense of the data coming from an infrared spectrometer. Contents include spectra and diagnostic bands for the more common functional groups as well as chapters on polyester spectra and interpretation aids. Discussions include: Science of infrared interpretation Light and molecular vibrations How and why molecules absorb infrared radiation Peak heights, intensities, and widths Hydrocarbons, carbonyl groups, and molecules with C-N bonds Polymers and inorganic molecules The use of atlases, library searching, spectral subtraction, and the Internet in augmenting interpretation Each chapter presents an introduction to the nomenclature and structure of a specific functional group and proceeds with the important diagnostic bands for each group. Infrared Spectral Interpretation serves both novices and experienced practitioners in this field. The author maintains a website and blog with supplemental material. His training course schedule is also available online.
Scientific and Technical Aerospace Reports
Research in Progress
Near-Infrared Spectroscopy
Author: Yukihiro Ozaki
Publisher: Springer Nature
ISBN: 9811586489
Category : Science
Languages : en
Pages : 593
Book Description
This book provides knowledge of the basic theory, spectral analysis methods, chemometrics, instrumentation, and applications of near-infrared (NIR) spectroscopy—not as a handbook but rather as a sourcebook of NIR spectroscopy. Thus, some emphasis is placed on the description of basic knowledge that is important in learning and using NIR spectroscopy. The book also deals with applications for a variety of research fields that are very useful for a wide range of readers from graduate students to scientists and engineers in both academia and industry. For readers who are novices in NIR spectroscopy, this book provides a good introduction, and for those who already are familiar with the field it affords an excellent means of strengthening their knowledge about NIR spectroscopy and keeping abreast of recent developments.
Publisher: Springer Nature
ISBN: 9811586489
Category : Science
Languages : en
Pages : 593
Book Description
This book provides knowledge of the basic theory, spectral analysis methods, chemometrics, instrumentation, and applications of near-infrared (NIR) spectroscopy—not as a handbook but rather as a sourcebook of NIR spectroscopy. Thus, some emphasis is placed on the description of basic knowledge that is important in learning and using NIR spectroscopy. The book also deals with applications for a variety of research fields that are very useful for a wide range of readers from graduate students to scientists and engineers in both academia and industry. For readers who are novices in NIR spectroscopy, this book provides a good introduction, and for those who already are familiar with the field it affords an excellent means of strengthening their knowledge about NIR spectroscopy and keeping abreast of recent developments.
Hydrogen Bonding
Author: Steve Scheiner
Publisher: Oxford University Press, USA
ISBN: 019509011X
Category : Science
Languages : en
Pages : 396
Book Description
Because of the importance of the hydrogen bond, there have been scores of insights gained about its fundamental nature by quantum chemical computations over the years. Such methods can probe subtle characteristics of the electronic structure and examine regions of the potential energy surface that are simply not accessible by experimental means. The maturation of the techniques, codes, and computer hardware have permitted calculations of unprecedented reliability and rivaling the accuracy of experimental data. This book strives first toward an appreciation of the power of quantum chemistry to analyze the deepest roots of the hydrogen bond phenomenon. It offers a systematic and understandable account of decades of such calculations, focusing on the most important findings. This book provides readers with the tools to understand the original literature, and to perhaps carry out some calculations of their very own on systems of interest.
Publisher: Oxford University Press, USA
ISBN: 019509011X
Category : Science
Languages : en
Pages : 396
Book Description
Because of the importance of the hydrogen bond, there have been scores of insights gained about its fundamental nature by quantum chemical computations over the years. Such methods can probe subtle characteristics of the electronic structure and examine regions of the potential energy surface that are simply not accessible by experimental means. The maturation of the techniques, codes, and computer hardware have permitted calculations of unprecedented reliability and rivaling the accuracy of experimental data. This book strives first toward an appreciation of the power of quantum chemistry to analyze the deepest roots of the hydrogen bond phenomenon. It offers a systematic and understandable account of decades of such calculations, focusing on the most important findings. This book provides readers with the tools to understand the original literature, and to perhaps carry out some calculations of their very own on systems of interest.
Molecular and Laser Spectroscopy
Author: V.P. Gupta
Publisher: Elsevier
ISBN: 012849882X
Category : Science
Languages : en
Pages : 364
Book Description
Molecular and Laser Spectroscopy: Advances and Applications provides students and researchers with an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. Editor V.P. Gupta has brought together the eminent scientists on a selection of topics to develop a systematic approach, first covering basic principles needed to understand each cutting-edge technique and application. This book acts as a standard reference for advanced students of molecular and laser spectroscopy and as a graduate text for new entrants in the field. The book covers a wide range of applications of molecular and laser spectroscopy in diverse areas ranging from materials to medicine and defence, biomedical research, environmental monitoring, forensic investigations, food and agriculture, and chemical, pharmaceutical and petrochemical processes. Researchers and scientific personnel in these fields will learn the latest techniques in order to put them to practical use in their work. - Covers several areas of spectroscopy research in a single volume, saving researchers time - Includes exhaustive lists of research articles, reviews and books at the end of each chapter to point readers in the right direction for further learning - Features illustrative examples of the varied applications - Serves as a practical guide to those interested in using molecular and laser spectroscopy tools in their research and field applications
Publisher: Elsevier
ISBN: 012849882X
Category : Science
Languages : en
Pages : 364
Book Description
Molecular and Laser Spectroscopy: Advances and Applications provides students and researchers with an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. Editor V.P. Gupta has brought together the eminent scientists on a selection of topics to develop a systematic approach, first covering basic principles needed to understand each cutting-edge technique and application. This book acts as a standard reference for advanced students of molecular and laser spectroscopy and as a graduate text for new entrants in the field. The book covers a wide range of applications of molecular and laser spectroscopy in diverse areas ranging from materials to medicine and defence, biomedical research, environmental monitoring, forensic investigations, food and agriculture, and chemical, pharmaceutical and petrochemical processes. Researchers and scientific personnel in these fields will learn the latest techniques in order to put them to practical use in their work. - Covers several areas of spectroscopy research in a single volume, saving researchers time - Includes exhaustive lists of research articles, reviews and books at the end of each chapter to point readers in the right direction for further learning - Features illustrative examples of the varied applications - Serves as a practical guide to those interested in using molecular and laser spectroscopy tools in their research and field applications